Matches in SemOpenAlex for { <https://semopenalex.org/work/W4384997495> ?p ?o ?g. }
- W4384997495 endingPage "116211" @default.
- W4384997495 startingPage "116211" @default.
- W4384997495 abstract "Soft materials such as biological tissues or magnetorheological elastomers present complex mechanical behaviors that include large deformations, numerous nonlinearities, time- or even external field (magnetic)-dependent responses. The description of their constitutive modeling is challenging and often time-consuming. Numerical algorithms to automatically calibrate model parameters have provided invaluable tools to help this purpose. However, these are mostly limited to the fitting of a set of pre-defined parameters associated with the model used. In this work, we go a step further by developing a machine learning framework capable of automatically identifying not only such model parameters but also the optimal kinematics and rheological model. To this end, we present a multiphysics model-driven framework that optimally selects the most suitable model kinematics, its rheological components and their arrangement for a given set of experimental curves. Subsequently, it calibrates all the material constants belonging to such a model, independent of its complexity. We demonstrate the versatility and capabilities of this framework with examples on hyperelastic, viscohyperelastic and magneto-viscohyperelastic materials. The present work opens new routes to not only fit model parameters but to identify the constitutive ingredients and underlying mechanisms needed to describe nonlinear responses of soft active materials." @default.
- W4384997495 created "2023-07-22" @default.
- W4384997495 creator A5085330191 @default.
- W4384997495 creator A5092512944 @default.
- W4384997495 date "2023-10-01" @default.
- W4384997495 modified "2023-10-14" @default.
- W4384997495 title "Model-driven identification framework for optimal constitutive modeling from kinematics and rheological arrangement" @default.
- W4384997495 cites W1996371630 @default.
- W4384997495 cites W1996725461 @default.
- W4384997495 cites W2006318340 @default.
- W4384997495 cites W2006886109 @default.
- W4384997495 cites W2016980067 @default.
- W4384997495 cites W2040823439 @default.
- W4384997495 cites W2041008991 @default.
- W4384997495 cites W2050292883 @default.
- W4384997495 cites W2053643353 @default.
- W4384997495 cites W2058205997 @default.
- W4384997495 cites W2072660839 @default.
- W4384997495 cites W2091643435 @default.
- W4384997495 cites W2099366084 @default.
- W4384997495 cites W2120486607 @default.
- W4384997495 cites W2130104814 @default.
- W4384997495 cites W2136244424 @default.
- W4384997495 cites W2144642856 @default.
- W4384997495 cites W2144946541 @default.
- W4384997495 cites W2162870748 @default.
- W4384997495 cites W2168859422 @default.
- W4384997495 cites W2181576226 @default.
- W4384997495 cites W2261676784 @default.
- W4384997495 cites W2295124130 @default.
- W4384997495 cites W2414370009 @default.
- W4384997495 cites W2539324467 @default.
- W4384997495 cites W2575838740 @default.
- W4384997495 cites W2896050657 @default.
- W4384997495 cites W2899283552 @default.
- W4384997495 cites W2959296226 @default.
- W4384997495 cites W2964000936 @default.
- W4384997495 cites W2994809984 @default.
- W4384997495 cites W2996028791 @default.
- W4384997495 cites W2999772350 @default.
- W4384997495 cites W3008415402 @default.
- W4384997495 cites W3022022281 @default.
- W4384997495 cites W3037238793 @default.
- W4384997495 cites W3157127629 @default.
- W4384997495 cites W3171025682 @default.
- W4384997495 cites W3183252230 @default.
- W4384997495 cites W3194815011 @default.
- W4384997495 cites W3199814420 @default.
- W4384997495 cites W3210000009 @default.
- W4384997495 cites W4206321046 @default.
- W4384997495 cites W4210387017 @default.
- W4384997495 cites W4213384371 @default.
- W4384997495 cites W4221031921 @default.
- W4384997495 cites W4226213782 @default.
- W4384997495 cites W4253538687 @default.
- W4384997495 cites W4287448160 @default.
- W4384997495 cites W4288077381 @default.
- W4384997495 cites W4288905815 @default.
- W4384997495 cites W4290973076 @default.
- W4384997495 cites W4291016425 @default.
- W4384997495 cites W4293155360 @default.
- W4384997495 cites W4296468671 @default.
- W4384997495 cites W4297325538 @default.
- W4384997495 cites W4307003187 @default.
- W4384997495 cites W4308599621 @default.
- W4384997495 cites W4309079827 @default.
- W4384997495 cites W4311139542 @default.
- W4384997495 cites W4313255218 @default.
- W4384997495 cites W4313681194 @default.
- W4384997495 cites W4316039195 @default.
- W4384997495 cites W4318978428 @default.
- W4384997495 cites W4319878959 @default.
- W4384997495 cites W4321769971 @default.
- W4384997495 cites W4322101930 @default.
- W4384997495 cites W4353106429 @default.
- W4384997495 cites W4360877658 @default.
- W4384997495 cites W4361011590 @default.
- W4384997495 cites W4362519940 @default.
- W4384997495 cites W4363678911 @default.
- W4384997495 cites W4366247643 @default.
- W4384997495 doi "https://doi.org/10.1016/j.cma.2023.116211" @default.
- W4384997495 hasPublicationYear "2023" @default.
- W4384997495 type Work @default.
- W4384997495 citedByCount "0" @default.
- W4384997495 crossrefType "journal-article" @default.
- W4384997495 hasAuthorship W4384997495A5085330191 @default.
- W4384997495 hasAuthorship W4384997495A5092512944 @default.
- W4384997495 hasBestOaLocation W43849974951 @default.
- W4384997495 hasConcept C121332964 @default.
- W4384997495 hasConcept C127413603 @default.
- W4384997495 hasConcept C135628077 @default.
- W4384997495 hasConcept C147370603 @default.
- W4384997495 hasConcept C158622935 @default.
- W4384997495 hasConcept C177264268 @default.
- W4384997495 hasConcept C199360897 @default.
- W4384997495 hasConcept C200990466 @default.
- W4384997495 hasConcept C202973686 @default.
- W4384997495 hasConcept C39920418 @default.