Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385001544> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4385001544 abstract "Energy systems, climate change, and public health are among the primary reasons for moving toward electrification in transportation. Transportation electrification is being promoted worldwide to reduce emissions. As a result, many automakers will soon start making only battery electric vehicles (BEVs). BEV adoption rates are rising in California, mainly due to climate change and air pollution concerns. While great for climate and pollution goals, improperly managed BEV charging can lead to insufficient charging infrastructure and power outages. This study develops a novel Micro Clustering Deep Neural Network (MCDNN), an artificial neural network algorithm that is highly effective at learning BEVs trip and charging data to forecast BEV charging events, information that is essential for electricity load aggregators and utility managers to provide charging stations and electricity capacity effectively. The MCDNN is configured using a robust dataset of trips and charges that occurred in California between 2015 and 2020 from 132 BEVs, spanning 5 BEV models for a total of 1570167 vehicle miles traveled. The numerical findings revealed that the proposed MCDNN is more effective than benchmark approaches in this field, such as support vector machine, k nearest neighbors, decision tree, and other neural network-based models in predicting the charging events." @default.
- W4385001544 created "2023-07-22" @default.
- W4385001544 creator A5012157674 @default.
- W4385001544 creator A5061685231 @default.
- W4385001544 creator A5069956792 @default.
- W4385001544 creator A5088062800 @default.
- W4385001544 creator A5092512981 @default.
- W4385001544 date "2023-07-20" @default.
- W4385001544 modified "2023-09-25" @default.
- W4385001544 title "Forecasting Battery Electric Vehicle Charging Behavior: A Deep Learning Approach Equipped with Micro-Clustering and SMOTE Techniques" @default.
- W4385001544 doi "https://doi.org/10.48550/arxiv.2307.10588" @default.
- W4385001544 hasPublicationYear "2023" @default.
- W4385001544 type Work @default.
- W4385001544 citedByCount "0" @default.
- W4385001544 crossrefType "posted-content" @default.
- W4385001544 hasAuthorship W4385001544A5012157674 @default.
- W4385001544 hasAuthorship W4385001544A5061685231 @default.
- W4385001544 hasAuthorship W4385001544A5069956792 @default.
- W4385001544 hasAuthorship W4385001544A5088062800 @default.
- W4385001544 hasAuthorship W4385001544A5092512981 @default.
- W4385001544 hasBestOaLocation W43850015441 @default.
- W4385001544 hasConcept C110069716 @default.
- W4385001544 hasConcept C119599485 @default.
- W4385001544 hasConcept C119857082 @default.
- W4385001544 hasConcept C121332964 @default.
- W4385001544 hasConcept C127413603 @default.
- W4385001544 hasConcept C13280743 @default.
- W4385001544 hasConcept C163258240 @default.
- W4385001544 hasConcept C171146098 @default.
- W4385001544 hasConcept C185798385 @default.
- W4385001544 hasConcept C205649164 @default.
- W4385001544 hasConcept C206658404 @default.
- W4385001544 hasConcept C22212356 @default.
- W4385001544 hasConcept C2776422217 @default.
- W4385001544 hasConcept C2778324724 @default.
- W4385001544 hasConcept C41008148 @default.
- W4385001544 hasConcept C50644808 @default.
- W4385001544 hasConcept C555008776 @default.
- W4385001544 hasConcept C62520636 @default.
- W4385001544 hasConcept C73555534 @default.
- W4385001544 hasConceptScore W4385001544C110069716 @default.
- W4385001544 hasConceptScore W4385001544C119599485 @default.
- W4385001544 hasConceptScore W4385001544C119857082 @default.
- W4385001544 hasConceptScore W4385001544C121332964 @default.
- W4385001544 hasConceptScore W4385001544C127413603 @default.
- W4385001544 hasConceptScore W4385001544C13280743 @default.
- W4385001544 hasConceptScore W4385001544C163258240 @default.
- W4385001544 hasConceptScore W4385001544C171146098 @default.
- W4385001544 hasConceptScore W4385001544C185798385 @default.
- W4385001544 hasConceptScore W4385001544C205649164 @default.
- W4385001544 hasConceptScore W4385001544C206658404 @default.
- W4385001544 hasConceptScore W4385001544C22212356 @default.
- W4385001544 hasConceptScore W4385001544C2776422217 @default.
- W4385001544 hasConceptScore W4385001544C2778324724 @default.
- W4385001544 hasConceptScore W4385001544C41008148 @default.
- W4385001544 hasConceptScore W4385001544C50644808 @default.
- W4385001544 hasConceptScore W4385001544C555008776 @default.
- W4385001544 hasConceptScore W4385001544C62520636 @default.
- W4385001544 hasConceptScore W4385001544C73555534 @default.
- W4385001544 hasLocation W43850015441 @default.
- W4385001544 hasOpenAccess W4385001544 @default.
- W4385001544 hasPrimaryLocation W43850015441 @default.
- W4385001544 hasRelatedWork W2130646474 @default.
- W4385001544 hasRelatedWork W2903974956 @default.
- W4385001544 hasRelatedWork W3108229430 @default.
- W4385001544 hasRelatedWork W3163361934 @default.
- W4385001544 hasRelatedWork W3183953317 @default.
- W4385001544 hasRelatedWork W3207899783 @default.
- W4385001544 hasRelatedWork W3209824285 @default.
- W4385001544 hasRelatedWork W4211171417 @default.
- W4385001544 hasRelatedWork W4383501412 @default.
- W4385001544 hasRelatedWork W4384076735 @default.
- W4385001544 isParatext "false" @default.
- W4385001544 isRetracted "false" @default.
- W4385001544 workType "article" @default.