Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385059424> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4385059424 abstract "Recent developments in electronic payment technologies have significantly increased the volume of daily online transactions and payments via credit cards. As internet use grows exponentially, it naturally follows that there is also a rise in credit card fraud, which is having a big effect on many organizations, including those in the financial industry. To detect risks such as fraudulent transactions and nonuniform attacks, the development of advanced financial detection mechanisms proactively completes the required task. However, these problems have been addressed by machine learning techniques on a large scale over the past years. Hence, these techniques need some improvement in terms of identifying unfamiliar attack patterns, velocity calculations, and big data analysis. In this paper, we propose a convolutional neural network approach (CNN) along with two machine learning algorithms to tackle the issue of credit card fraud detection. Our proposed models were evaluated and compared when dealing with large amounts of data using a highly imbalanced real-world credit card fraud detection dataset. Python programming languages were used to preprocess the data and test the model's measurements and performance. As observed in the results, an accuracy of 99.7% using the Random Forest classifier was obtained, which achieved a superior result in comparison to other models." @default.
- W4385059424 created "2023-07-23" @default.
- W4385059424 creator A5002628427 @default.
- W4385059424 creator A5092514344 @default.
- W4385059424 date "2023-02-20" @default.
- W4385059424 modified "2023-09-25" @default.
- W4385059424 title "Deep CNN approach for Unbalanced Credit Card Fraud Detection Data" @default.
- W4385059424 cites W1602011302 @default.
- W4385059424 cites W2057819225 @default.
- W4385059424 cites W2085766370 @default.
- W4385059424 cites W2739179075 @default.
- W4385059424 cites W2760506815 @default.
- W4385059424 cites W2944842185 @default.
- W4385059424 cites W2960423448 @default.
- W4385059424 cites W2970050845 @default.
- W4385059424 cites W2986011691 @default.
- W4385059424 cites W3015795707 @default.
- W4385059424 cites W3033936902 @default.
- W4385059424 cites W3044079317 @default.
- W4385059424 cites W3154232085 @default.
- W4385059424 cites W4205355827 @default.
- W4385059424 cites W4288000195 @default.
- W4385059424 doi "https://doi.org/10.1109/aset56582.2023.10180615" @default.
- W4385059424 hasPublicationYear "2023" @default.
- W4385059424 type Work @default.
- W4385059424 citedByCount "0" @default.
- W4385059424 crossrefType "proceedings-article" @default.
- W4385059424 hasAuthorship W4385059424A5002628427 @default.
- W4385059424 hasAuthorship W4385059424A5092514344 @default.
- W4385059424 hasConcept C110875604 @default.
- W4385059424 hasConcept C111919701 @default.
- W4385059424 hasConcept C119857082 @default.
- W4385059424 hasConcept C124101348 @default.
- W4385059424 hasConcept C136764020 @default.
- W4385059424 hasConcept C145097563 @default.
- W4385059424 hasConcept C154945302 @default.
- W4385059424 hasConcept C169258074 @default.
- W4385059424 hasConcept C2780747020 @default.
- W4385059424 hasConcept C2983355114 @default.
- W4385059424 hasConcept C41008148 @default.
- W4385059424 hasConcept C519991488 @default.
- W4385059424 hasConcept C75684735 @default.
- W4385059424 hasConcept C81363708 @default.
- W4385059424 hasConcept C95623464 @default.
- W4385059424 hasConceptScore W4385059424C110875604 @default.
- W4385059424 hasConceptScore W4385059424C111919701 @default.
- W4385059424 hasConceptScore W4385059424C119857082 @default.
- W4385059424 hasConceptScore W4385059424C124101348 @default.
- W4385059424 hasConceptScore W4385059424C136764020 @default.
- W4385059424 hasConceptScore W4385059424C145097563 @default.
- W4385059424 hasConceptScore W4385059424C154945302 @default.
- W4385059424 hasConceptScore W4385059424C169258074 @default.
- W4385059424 hasConceptScore W4385059424C2780747020 @default.
- W4385059424 hasConceptScore W4385059424C2983355114 @default.
- W4385059424 hasConceptScore W4385059424C41008148 @default.
- W4385059424 hasConceptScore W4385059424C519991488 @default.
- W4385059424 hasConceptScore W4385059424C75684735 @default.
- W4385059424 hasConceptScore W4385059424C81363708 @default.
- W4385059424 hasConceptScore W4385059424C95623464 @default.
- W4385059424 hasLocation W43850594241 @default.
- W4385059424 hasOpenAccess W4385059424 @default.
- W4385059424 hasPrimaryLocation W43850594241 @default.
- W4385059424 hasRelatedWork W2964383635 @default.
- W4385059424 hasRelatedWork W3038539283 @default.
- W4385059424 hasRelatedWork W3115100063 @default.
- W4385059424 hasRelatedWork W4312452763 @default.
- W4385059424 hasRelatedWork W4324316836 @default.
- W4385059424 hasRelatedWork W4360763696 @default.
- W4385059424 hasRelatedWork W4360994966 @default.
- W4385059424 hasRelatedWork W4362725573 @default.
- W4385059424 hasRelatedWork W4372061094 @default.
- W4385059424 hasRelatedWork W4378212229 @default.
- W4385059424 isParatext "false" @default.
- W4385059424 isRetracted "false" @default.
- W4385059424 workType "article" @default.