Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385062016> ?p ?o ?g. }
- W4385062016 endingPage "85614" @default.
- W4385062016 startingPage "85600" @default.
- W4385062016 abstract "Spatiotemporal fusion (STF) techniques play important roles in Earth observation analysis as they can produce images with both high spatial and temporal resolution. However, existing STF models often fuse images from various satellites, not satisfying the demand for precise crop monitoring. In contrast, unmanned aerial vehicle (UAV) images can deliver detailed data, and deep learning (DL)-based STF models have a high potential for automatically extracting abstract features. To this end, this study proposed a novel end-to-end DL-based STF model named UAV-Net, which can produce centimeter-scale UAV images. UAV-Net has an encoder-decoder architecture with Modified ResNet (MResNet), Feature Pyramid Network (FPN), and decoder modules. The encoder uses MResNet modules to extract input features, while the FPN module performs a multiscale fusion of these features before reconstructing UAV images using transposed convolution in the decoder module. Through the comparison and ablation experiments, this study evaluated the efficacies of the MResNet modules with 18, 34, and 50 layers, along with FPN module of UAV-Net. The experimental results on real-world datasets demonstrated that UAV-Net adequately produce UAV images both visually and quantitatively. Furthermore, Comparison with state-of-the-art STF models highlights the innovative and effective of UAV-Net for producing centimeter-scale images. The predicted centimeter-scale images have the potential to be useful for various environmental monitoring applications." @default.
- W4385062016 created "2023-07-23" @default.
- W4385062016 creator A5003635909 @default.
- W4385062016 creator A5036488405 @default.
- W4385062016 creator A5056689386 @default.
- W4385062016 creator A5061123078 @default.
- W4385062016 creator A5064495970 @default.
- W4385062016 date "2023-01-01" @default.
- W4385062016 modified "2023-10-17" @default.
- W4385062016 title "Deep Learning-Based Spatiotemporal Fusion of Unmanned Aerial Vehicle and Satellite Reflectance Images for Crop Monitoring" @default.
- W4385062016 cites W1970515153 @default.
- W4385062016 cites W2074907730 @default.
- W4385062016 cites W2082263501 @default.
- W4385062016 cites W2088603520 @default.
- W4385062016 cites W2096885759 @default.
- W4385062016 cites W2126340432 @default.
- W4385062016 cites W2133665775 @default.
- W4385062016 cites W2152261845 @default.
- W4385062016 cites W2170787371 @default.
- W4385062016 cites W2194775991 @default.
- W4385062016 cites W2565639579 @default.
- W4385062016 cites W2618953255 @default.
- W4385062016 cites W2774052553 @default.
- W4385062016 cites W2795018073 @default.
- W4385062016 cites W2843468165 @default.
- W4385062016 cites W2884971508 @default.
- W4385062016 cites W2923136550 @default.
- W4385062016 cites W2950604226 @default.
- W4385062016 cites W2956175719 @default.
- W4385062016 cites W2985998130 @default.
- W4385062016 cites W2992343265 @default.
- W4385062016 cites W3004446657 @default.
- W4385062016 cites W3033814368 @default.
- W4385062016 cites W3037820092 @default.
- W4385062016 cites W3047166575 @default.
- W4385062016 cites W3049269139 @default.
- W4385062016 cites W3116453415 @default.
- W4385062016 cites W3123173184 @default.
- W4385062016 cites W3126693333 @default.
- W4385062016 cites W3132908999 @default.
- W4385062016 cites W3154335459 @default.
- W4385062016 cites W3155490439 @default.
- W4385062016 cites W3184140484 @default.
- W4385062016 cites W3201225939 @default.
- W4385062016 cites W3203535769 @default.
- W4385062016 cites W4200288366 @default.
- W4385062016 cites W4205964598 @default.
- W4385062016 cites W4206393888 @default.
- W4385062016 cites W4206730401 @default.
- W4385062016 cites W4206765829 @default.
- W4385062016 cites W4213425069 @default.
- W4385062016 cites W4214532801 @default.
- W4385062016 cites W4280538787 @default.
- W4385062016 cites W4285283605 @default.
- W4385062016 cites W4293450907 @default.
- W4385062016 cites W4293715386 @default.
- W4385062016 doi "https://doi.org/10.1109/access.2023.3297513" @default.
- W4385062016 hasPublicationYear "2023" @default.
- W4385062016 type Work @default.
- W4385062016 citedByCount "0" @default.
- W4385062016 crossrefType "journal-article" @default.
- W4385062016 hasAuthorship W4385062016A5003635909 @default.
- W4385062016 hasAuthorship W4385062016A5036488405 @default.
- W4385062016 hasAuthorship W4385062016A5056689386 @default.
- W4385062016 hasAuthorship W4385062016A5061123078 @default.
- W4385062016 hasAuthorship W4385062016A5064495970 @default.
- W4385062016 hasBestOaLocation W43850620161 @default.
- W4385062016 hasConcept C108583219 @default.
- W4385062016 hasConcept C111919701 @default.
- W4385062016 hasConcept C118505674 @default.
- W4385062016 hasConcept C119599485 @default.
- W4385062016 hasConcept C120665830 @default.
- W4385062016 hasConcept C121332964 @default.
- W4385062016 hasConcept C127313418 @default.
- W4385062016 hasConcept C127413603 @default.
- W4385062016 hasConcept C141353440 @default.
- W4385062016 hasConcept C142575187 @default.
- W4385062016 hasConcept C154945302 @default.
- W4385062016 hasConcept C31972630 @default.
- W4385062016 hasConcept C41008148 @default.
- W4385062016 hasConcept C62649853 @default.
- W4385062016 hasConceptScore W4385062016C108583219 @default.
- W4385062016 hasConceptScore W4385062016C111919701 @default.
- W4385062016 hasConceptScore W4385062016C118505674 @default.
- W4385062016 hasConceptScore W4385062016C119599485 @default.
- W4385062016 hasConceptScore W4385062016C120665830 @default.
- W4385062016 hasConceptScore W4385062016C121332964 @default.
- W4385062016 hasConceptScore W4385062016C127313418 @default.
- W4385062016 hasConceptScore W4385062016C127413603 @default.
- W4385062016 hasConceptScore W4385062016C141353440 @default.
- W4385062016 hasConceptScore W4385062016C142575187 @default.
- W4385062016 hasConceptScore W4385062016C154945302 @default.
- W4385062016 hasConceptScore W4385062016C31972630 @default.
- W4385062016 hasConceptScore W4385062016C41008148 @default.
- W4385062016 hasConceptScore W4385062016C62649853 @default.
- W4385062016 hasFunder F4320308564 @default.
- W4385062016 hasFunder F4320334789 @default.
- W4385062016 hasLocation W43850620161 @default.