Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385063397> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4385063397 endingPage "12" @default.
- W4385063397 startingPage "1" @default.
- W4385063397 abstract "Purpose: Effort Estimation is a process by which one can predict the development time and cost to develop a software process or product. Many approaches have been tried to predict this probabilistic process accurately, but no single technique has been consistently successful. There have been many studies on software effort estimation using Fuzzy or Machine Learning. For this reason, this study aims to combine Fuzzy and Machine Learning and get better results.Methods: Various methods and combinations have been carried out in previous research, this research tries to combine Fuzzy and Machine Learning methods, namely Logarithmic Fuzzy Preference Programming (LFPP) and Least Squares Support Vector Machines Machine (LSSVM). LFPP is used to recalculate the cost driver weights and generate Effort Adjustment Point (EAP). The EAP and Lines of Code values are then entered as input for LSSVM. The output results are then measured using the Mean Magnitude of Relative Error (MMRE) and Root-Mean-Square Error (RMSE). In this study, COCOMO and NASA datasets were used.Result: The results obtained are MMRE of 0.015019 and RMSE of 1.703092 on the COCOMO dataset, while on the NASA dataset the results of MMRE are 0.007324 and RMSE are 6.037986. Then 100% of the prediction results meet the 1% range of actual effort on the COCOMO dataset, while on the NASA dataset, the results show that 89,475 meet the 1% range of actual effort and 100% meet the 5% range of actual effort. The results of this study also show a better level of accuracy than using the COCOMO Intermediate method.Novelty: This study uses a combination of LFPP and LSSVM, which is an improvement from previous studies that used a combination of FAHP and LSSVM. The method used is also different where LFPP produces better output than FAHP and all data in the dataset is used for training and testing, whereas in previous research it only used a small part of the data." @default.
- W4385063397 created "2023-07-23" @default.
- W4385063397 creator A5025579710 @default.
- W4385063397 creator A5026540250 @default.
- W4385063397 date "2022-12-26" @default.
- W4385063397 modified "2023-10-18" @default.
- W4385063397 title "Software Effort Estimation Using Logarithmic Fuzzy Preference Programming and Least Squares Support Vector Machines" @default.
- W4385063397 doi "https://doi.org/10.15294/sji.v10i1.39865" @default.
- W4385063397 hasPublicationYear "2022" @default.
- W4385063397 type Work @default.
- W4385063397 citedByCount "0" @default.
- W4385063397 crossrefType "journal-article" @default.
- W4385063397 hasAuthorship W4385063397A5025579710 @default.
- W4385063397 hasAuthorship W4385063397A5026540250 @default.
- W4385063397 hasBestOaLocation W43850633971 @default.
- W4385063397 hasConcept C105795698 @default.
- W4385063397 hasConcept C119857082 @default.
- W4385063397 hasConcept C12267149 @default.
- W4385063397 hasConcept C124101348 @default.
- W4385063397 hasConcept C127413603 @default.
- W4385063397 hasConcept C139945424 @default.
- W4385063397 hasConcept C146978453 @default.
- W4385063397 hasConcept C154945302 @default.
- W4385063397 hasConcept C186846655 @default.
- W4385063397 hasConcept C199360897 @default.
- W4385063397 hasConcept C204323151 @default.
- W4385063397 hasConcept C2777904410 @default.
- W4385063397 hasConcept C33923547 @default.
- W4385063397 hasConcept C41008148 @default.
- W4385063397 hasConcept C529173508 @default.
- W4385063397 hasConcept C53238903 @default.
- W4385063397 hasConcept C58166 @default.
- W4385063397 hasConceptScore W4385063397C105795698 @default.
- W4385063397 hasConceptScore W4385063397C119857082 @default.
- W4385063397 hasConceptScore W4385063397C12267149 @default.
- W4385063397 hasConceptScore W4385063397C124101348 @default.
- W4385063397 hasConceptScore W4385063397C127413603 @default.
- W4385063397 hasConceptScore W4385063397C139945424 @default.
- W4385063397 hasConceptScore W4385063397C146978453 @default.
- W4385063397 hasConceptScore W4385063397C154945302 @default.
- W4385063397 hasConceptScore W4385063397C186846655 @default.
- W4385063397 hasConceptScore W4385063397C199360897 @default.
- W4385063397 hasConceptScore W4385063397C204323151 @default.
- W4385063397 hasConceptScore W4385063397C2777904410 @default.
- W4385063397 hasConceptScore W4385063397C33923547 @default.
- W4385063397 hasConceptScore W4385063397C41008148 @default.
- W4385063397 hasConceptScore W4385063397C529173508 @default.
- W4385063397 hasConceptScore W4385063397C53238903 @default.
- W4385063397 hasConceptScore W4385063397C58166 @default.
- W4385063397 hasIssue "1" @default.
- W4385063397 hasLocation W43850633971 @default.
- W4385063397 hasOpenAccess W4385063397 @default.
- W4385063397 hasPrimaryLocation W43850633971 @default.
- W4385063397 hasRelatedWork W1996541855 @default.
- W4385063397 hasRelatedWork W2101819884 @default.
- W4385063397 hasRelatedWork W2803710604 @default.
- W4385063397 hasRelatedWork W2937631562 @default.
- W4385063397 hasRelatedWork W2979979539 @default.
- W4385063397 hasRelatedWork W3005154454 @default.
- W4385063397 hasRelatedWork W3127425528 @default.
- W4385063397 hasRelatedWork W3194539120 @default.
- W4385063397 hasRelatedWork W3195168932 @default.
- W4385063397 hasRelatedWork W4361795583 @default.
- W4385063397 hasVolume "10" @default.
- W4385063397 isParatext "false" @default.
- W4385063397 isRetracted "false" @default.
- W4385063397 workType "article" @default.