Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385065624> ?p ?o ?g. }
- W4385065624 endingPage "1813" @default.
- W4385065624 startingPage "1803" @default.
- W4385065624 abstract "Abstract Aim Theoretically, woody biomass turnover time () quantified using outflux (i.e. tree mortality) predicts biomass dynamics better than using influx (i.e. productivity). This study aims at using forest inventory data to empirically test the outflux approach and generate a spatially explicit understanding of woody in mature forests. We further compared woody estimates with dynamic global vegetation models (DGVMs) and with a data assimilation product of C stocks and fluxes—CARDAMOM. Location Continents. Time Period Historic from 1951 to 2018. Major Taxa Studied Trees and forests. Methods We compared the approaches of using outflux versus influx for estimating woody and predicting biomass accumulation rates. We investigated abiotic and biotic drivers of spatial woody and generated a spatially explicit map of woody at a 0.25‐degree resolution across continents using machine learning. We further examined whether six DGVMs and CARDAMOM generally captured the observational pattern of woody . Results Woody quantified by the outflux approach better (with R 2 0.4–0.5) predicted the biomass accumulation rates than the influx approach (with R 2 0.1–0.4) across continents. We found large spatial variations of woody for mature forests, with highest values in temperate forests (98.8 ± 2.6 y) followed by boreal forests (73.9 ± 3.6 y) and tropical forests. The map of woody extrapolated from plot data showed higher values in wetter eastern and pacific coast USA, Africa and eastern Amazon. Climate (temperature and aridity index) and vegetation structure (tree density and forest age) were the dominant drivers of woody across continents. The highest woody in temperate forests was not captured by either DGVMs or CARDAMOM. Main Conclusions Our study empirically demonstrated the preference of using outflux over influx to estimate woody for predicting biomass accumulation rates. The spatially explicit map of woody and the underlying drivers provide valuable information to improve the representation of forest demography and carbon turnover processes in DGVMs." @default.
- W4385065624 created "2023-07-23" @default.
- W4385065624 creator A5007514651 @default.
- W4385065624 creator A5029081725 @default.
- W4385065624 creator A5037665979 @default.
- W4385065624 creator A5039989945 @default.
- W4385065624 creator A5051930323 @default.
- W4385065624 creator A5058824165 @default.
- W4385065624 creator A5066081927 @default.
- W4385065624 creator A5070378593 @default.
- W4385065624 creator A5073028617 @default.
- W4385065624 date "2023-07-21" @default.
- W4385065624 modified "2023-10-17" @default.
- W4385065624 title "Biogeographic pattern of living vegetation carbon turnover time in mature forests across continents" @default.
- W4385065624 cites W1920847554 @default.
- W4385065624 cites W1965122835 @default.
- W4385065624 cites W1966715855 @default.
- W4385065624 cites W1984806043 @default.
- W4385065624 cites W2006636438 @default.
- W4385065624 cites W2022224360 @default.
- W4385065624 cites W2048605790 @default.
- W4385065624 cites W2075641736 @default.
- W4385065624 cites W2085749928 @default.
- W4385065624 cites W2098469025 @default.
- W4385065624 cites W2101823097 @default.
- W4385065624 cites W2102008634 @default.
- W4385065624 cites W2109631166 @default.
- W4385065624 cites W2116492991 @default.
- W4385065624 cites W2124790556 @default.
- W4385065624 cites W2128440160 @default.
- W4385065624 cites W2132051962 @default.
- W4385065624 cites W2146490878 @default.
- W4385065624 cites W2151162783 @default.
- W4385065624 cites W2151328940 @default.
- W4385065624 cites W2153891055 @default.
- W4385065624 cites W2154702874 @default.
- W4385065624 cites W2159610882 @default.
- W4385065624 cites W2161783224 @default.
- W4385065624 cites W2164683520 @default.
- W4385065624 cites W2168604508 @default.
- W4385065624 cites W2258277964 @default.
- W4385065624 cites W2281492041 @default.
- W4385065624 cites W2302115378 @default.
- W4385065624 cites W2306278267 @default.
- W4385065624 cites W2532946150 @default.
- W4385065624 cites W2623273235 @default.
- W4385065624 cites W2755793808 @default.
- W4385065624 cites W2762953332 @default.
- W4385065624 cites W2801879948 @default.
- W4385065624 cites W2828015185 @default.
- W4385065624 cites W2905555547 @default.
- W4385065624 cites W2911964244 @default.
- W4385065624 cites W2916069439 @default.
- W4385065624 cites W2944892437 @default.
- W4385065624 cites W2945776610 @default.
- W4385065624 cites W2952733214 @default.
- W4385065624 cites W2963407560 @default.
- W4385065624 cites W2967245950 @default.
- W4385065624 cites W2985953884 @default.
- W4385065624 cites W3000466663 @default.
- W4385065624 cites W3008171167 @default.
- W4385065624 cites W3009221443 @default.
- W4385065624 cites W3028181898 @default.
- W4385065624 cites W3035415717 @default.
- W4385065624 cites W3095759995 @default.
- W4385065624 cites W3153432960 @default.
- W4385065624 cites W3158201663 @default.
- W4385065624 cites W3175791194 @default.
- W4385065624 cites W3198191399 @default.
- W4385065624 cites W4224216533 @default.
- W4385065624 cites W4253898195 @default.
- W4385065624 doi "https://doi.org/10.1111/geb.13736" @default.
- W4385065624 hasPublicationYear "2023" @default.
- W4385065624 type Work @default.
- W4385065624 citedByCount "0" @default.
- W4385065624 crossrefType "journal-article" @default.
- W4385065624 hasAuthorship W4385065624A5007514651 @default.
- W4385065624 hasAuthorship W4385065624A5029081725 @default.
- W4385065624 hasAuthorship W4385065624A5037665979 @default.
- W4385065624 hasAuthorship W4385065624A5039989945 @default.
- W4385065624 hasAuthorship W4385065624A5051930323 @default.
- W4385065624 hasAuthorship W4385065624A5058824165 @default.
- W4385065624 hasAuthorship W4385065624A5066081927 @default.
- W4385065624 hasAuthorship W4385065624A5070378593 @default.
- W4385065624 hasAuthorship W4385065624A5073028617 @default.
- W4385065624 hasBestOaLocation W43850656241 @default.
- W4385065624 hasConcept C100537666 @default.
- W4385065624 hasConcept C115540264 @default.
- W4385065624 hasConcept C128758860 @default.
- W4385065624 hasConcept C132215390 @default.
- W4385065624 hasConcept C132651083 @default.
- W4385065624 hasConcept C142724271 @default.
- W4385065624 hasConcept C185933670 @default.
- W4385065624 hasConcept C18903297 @default.
- W4385065624 hasConcept C2776133958 @default.
- W4385065624 hasConcept C39432304 @default.
- W4385065624 hasConcept C71924100 @default.
- W4385065624 hasConcept C83873828 @default.