Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385079063> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4385079063 abstract "The rapid development of the Internet of Things (IoT) has highlighted the critical importance of security and privacy in cognitive cities. In this context, radio frequency fingerprinting (RFF) identification has emerged as an excellent authentication scheme that provides intelligent and efficient identification in IoT systems. By leveraging RFF, we can improve the security and privacy of cognitive cities while also enhancing their operational efficiency. The RF nonlinear features are unique and unchanging, operating at the hardware level. This attribute renders them amenable to sufficient learning through convolution neural networks (CNNs), which have demonstrated remarkable identification accuracy. Nonetheless, CNNs suffer from a lack of strong interpretability and necessitate vast quantities of training data. Additionally, the enormous amount of data required for training imposes greater demands on computing resources, which are often inadequate in IoT. Moreover, traditional training schemes employ centralized datasets, which cannot ensure corresponding privacy. More recently, federated learning and fractional wavelet scattering network have been proposed to solve the problems above. To address this issue, we in this paper proposed a deep federated radio fingerprinting based on fractional wavelet scattering network (DFFNet) which can acquire the subtle features from non-stationary signals. The advantage of DFFNet is that the federated learning is applied to achieve privacy preserving during the learning process. Meanwhile, fractional wavelet is suitable for non-stationary signal’s features extraction with high interpretability. The representative experiment results demonstrate that hybrid federated framework DFFNet achieve about 99.1% identification accuracy under practical application." @default.
- W4385079063 created "2023-07-23" @default.
- W4385079063 creator A5047483989 @default.
- W4385079063 creator A5060549116 @default.
- W4385079063 creator A5065865566 @default.
- W4385079063 date "2023-06-19" @default.
- W4385079063 modified "2023-09-24" @default.
- W4385079063 title "DFFNet: Deep Federated Radio Fingerprinting Based on Fractional Wavelet Scattering Network" @default.
- W4385079063 cites W1182702830 @default.
- W4385079063 cites W1874399837 @default.
- W4385079063 cites W2012166391 @default.
- W4385079063 cites W2072072671 @default.
- W4385079063 cites W2093231248 @default.
- W4385079063 cites W2097571740 @default.
- W4385079063 cites W2155886813 @default.
- W4385079063 cites W2589910641 @default.
- W4385079063 cites W2618530766 @default.
- W4385079063 cites W2801519684 @default.
- W4385079063 cites W2803989302 @default.
- W4385079063 cites W2806665540 @default.
- W4385079063 cites W2810555899 @default.
- W4385079063 cites W2914940294 @default.
- W4385079063 cites W2916643524 @default.
- W4385079063 cites W2923353740 @default.
- W4385079063 cites W2981587265 @default.
- W4385079063 cites W3004340854 @default.
- W4385079063 cites W3015448029 @default.
- W4385079063 cites W3172135703 @default.
- W4385079063 cites W3181667991 @default.
- W4385079063 cites W3183911236 @default.
- W4385079063 cites W4239510810 @default.
- W4385079063 doi "https://doi.org/10.1109/iwcmc58020.2023.10183171" @default.
- W4385079063 hasPublicationYear "2023" @default.
- W4385079063 type Work @default.
- W4385079063 citedByCount "0" @default.
- W4385079063 crossrefType "proceedings-article" @default.
- W4385079063 hasAuthorship W4385079063A5047483989 @default.
- W4385079063 hasAuthorship W4385079063A5060549116 @default.
- W4385079063 hasAuthorship W4385079063A5065865566 @default.
- W4385079063 hasConcept C113775141 @default.
- W4385079063 hasConcept C116834253 @default.
- W4385079063 hasConcept C119857082 @default.
- W4385079063 hasConcept C124101348 @default.
- W4385079063 hasConcept C139502532 @default.
- W4385079063 hasConcept C148417208 @default.
- W4385079063 hasConcept C151730666 @default.
- W4385079063 hasConcept C154945302 @default.
- W4385079063 hasConcept C2779343474 @default.
- W4385079063 hasConcept C2781067378 @default.
- W4385079063 hasConcept C38652104 @default.
- W4385079063 hasConcept C41008148 @default.
- W4385079063 hasConcept C47432892 @default.
- W4385079063 hasConcept C52622490 @default.
- W4385079063 hasConcept C59822182 @default.
- W4385079063 hasConcept C86803240 @default.
- W4385079063 hasConceptScore W4385079063C113775141 @default.
- W4385079063 hasConceptScore W4385079063C116834253 @default.
- W4385079063 hasConceptScore W4385079063C119857082 @default.
- W4385079063 hasConceptScore W4385079063C124101348 @default.
- W4385079063 hasConceptScore W4385079063C139502532 @default.
- W4385079063 hasConceptScore W4385079063C148417208 @default.
- W4385079063 hasConceptScore W4385079063C151730666 @default.
- W4385079063 hasConceptScore W4385079063C154945302 @default.
- W4385079063 hasConceptScore W4385079063C2779343474 @default.
- W4385079063 hasConceptScore W4385079063C2781067378 @default.
- W4385079063 hasConceptScore W4385079063C38652104 @default.
- W4385079063 hasConceptScore W4385079063C41008148 @default.
- W4385079063 hasConceptScore W4385079063C47432892 @default.
- W4385079063 hasConceptScore W4385079063C52622490 @default.
- W4385079063 hasConceptScore W4385079063C59822182 @default.
- W4385079063 hasConceptScore W4385079063C86803240 @default.
- W4385079063 hasFunder F4320321001 @default.
- W4385079063 hasFunder F4320337504 @default.
- W4385079063 hasLocation W43850790631 @default.
- W4385079063 hasOpenAccess W4385079063 @default.
- W4385079063 hasPrimaryLocation W43850790631 @default.
- W4385079063 hasRelatedWork W2605281151 @default.
- W4385079063 hasRelatedWork W3006943036 @default.
- W4385079063 hasRelatedWork W3012234327 @default.
- W4385079063 hasRelatedWork W3119715496 @default.
- W4385079063 hasRelatedWork W3191046242 @default.
- W4385079063 hasRelatedWork W4200511449 @default.
- W4385079063 hasRelatedWork W4205364923 @default.
- W4385079063 hasRelatedWork W4206534706 @default.
- W4385079063 hasRelatedWork W4229079080 @default.
- W4385079063 hasRelatedWork W4294031299 @default.
- W4385079063 isParatext "false" @default.
- W4385079063 isRetracted "false" @default.
- W4385079063 workType "article" @default.