Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385152505> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4385152505 endingPage "265" @default.
- W4385152505 startingPage "254" @default.
- W4385152505 abstract "In forensic speaker recognition, the speaker’s vocal tract length (VTL) is an important factor. In this work formant frequency analysis of Malayalam vowels were carried out on sound samples collected from 100 speakers and their vocal tract lengths were found experimentally. We have estimated vocal tract length for five Malayalam vowel sounds for different speakers. Using formant frequencies, the effect of VTL on vowel production variation have been investigated here. Data were collected from 100 participants (52 females and 48 males) in five Malayalam vowels /a/, /e/, /u/, /ae/, and /o/. Each vowel was recorded ten times. The accuracy of the formant extraction technique is highly sensitive to the quality of the input sample. It works best with samples that don’t have any noise, but its performance goes down when it’s used with noisy data. The vocal tract was estimated using Pink Noise, White Gaussian Noise, and Red Noise with signal-to-noise ratios (SNRs) ranging from −20 dB to +20 dB. The autocorrelation-based formant extraction is a good way to find vocal tracts when there is a lot of noise in the background. This strategy improves the accuracy of VTL extraction even at extremely high noise levels (−20 dB) compared to previous research. This information is extremely valuable for forensic speaker recognition difficulties in environments with heavy background noise. The VTL can be employed for speaker normalization and parameter extraction." @default.
- W4385152505 created "2023-07-23" @default.
- W4385152505 creator A5030582263 @default.
- W4385152505 creator A5092523005 @default.
- W4385152505 creator A5092523006 @default.
- W4385152505 date "2023-01-01" @default.
- W4385152505 modified "2023-09-25" @default.
- W4385152505 title "Extraction of Vocal Tract Length from Formant Frequencies for Forensic Speech Applications in Noisy Environment" @default.
- W4385152505 cites W1468526617 @default.
- W4385152505 cites W18839207 @default.
- W4385152505 cites W1965015316 @default.
- W4385152505 cites W1978396169 @default.
- W4385152505 cites W1982976845 @default.
- W4385152505 cites W2021744162 @default.
- W4385152505 cites W2042007975 @default.
- W4385152505 cites W2079597002 @default.
- W4385152505 cites W2097143083 @default.
- W4385152505 cites W2143800077 @default.
- W4385152505 cites W2153119843 @default.
- W4385152505 cites W2156886787 @default.
- W4385152505 cites W2481223262 @default.
- W4385152505 cites W2524813515 @default.
- W4385152505 cites W2546778375 @default.
- W4385152505 cites W2631091912 @default.
- W4385152505 cites W4240035802 @default.
- W4385152505 cites W94013623 @default.
- W4385152505 doi "https://doi.org/10.1007/978-3-031-38296-3_20" @default.
- W4385152505 hasPublicationYear "2023" @default.
- W4385152505 type Work @default.
- W4385152505 citedByCount "0" @default.
- W4385152505 crossrefType "book-chapter" @default.
- W4385152505 hasAuthorship W4385152505A5030582263 @default.
- W4385152505 hasAuthorship W4385152505A5092523005 @default.
- W4385152505 hasAuthorship W4385152505A5092523006 @default.
- W4385152505 hasConcept C100675267 @default.
- W4385152505 hasConcept C115961682 @default.
- W4385152505 hasConcept C121332964 @default.
- W4385152505 hasConcept C136886441 @default.
- W4385152505 hasConcept C144024400 @default.
- W4385152505 hasConcept C154945302 @default.
- W4385152505 hasConcept C158215666 @default.
- W4385152505 hasConcept C19165224 @default.
- W4385152505 hasConcept C24890656 @default.
- W4385152505 hasConcept C2779581591 @default.
- W4385152505 hasConcept C2779662586 @default.
- W4385152505 hasConcept C28490314 @default.
- W4385152505 hasConcept C41008148 @default.
- W4385152505 hasConcept C47401133 @default.
- W4385152505 hasConcept C99498987 @default.
- W4385152505 hasConceptScore W4385152505C100675267 @default.
- W4385152505 hasConceptScore W4385152505C115961682 @default.
- W4385152505 hasConceptScore W4385152505C121332964 @default.
- W4385152505 hasConceptScore W4385152505C136886441 @default.
- W4385152505 hasConceptScore W4385152505C144024400 @default.
- W4385152505 hasConceptScore W4385152505C154945302 @default.
- W4385152505 hasConceptScore W4385152505C158215666 @default.
- W4385152505 hasConceptScore W4385152505C19165224 @default.
- W4385152505 hasConceptScore W4385152505C24890656 @default.
- W4385152505 hasConceptScore W4385152505C2779581591 @default.
- W4385152505 hasConceptScore W4385152505C2779662586 @default.
- W4385152505 hasConceptScore W4385152505C28490314 @default.
- W4385152505 hasConceptScore W4385152505C41008148 @default.
- W4385152505 hasConceptScore W4385152505C47401133 @default.
- W4385152505 hasConceptScore W4385152505C99498987 @default.
- W4385152505 hasLocation W43851525051 @default.
- W4385152505 hasOpenAccess W4385152505 @default.
- W4385152505 hasPrimaryLocation W43851525051 @default.
- W4385152505 hasRelatedWork W1486821748 @default.
- W4385152505 hasRelatedWork W1841184975 @default.
- W4385152505 hasRelatedWork W1911592522 @default.
- W4385152505 hasRelatedWork W2000130578 @default.
- W4385152505 hasRelatedWork W2049115903 @default.
- W4385152505 hasRelatedWork W2067459736 @default.
- W4385152505 hasRelatedWork W2106988383 @default.
- W4385152505 hasRelatedWork W2911374690 @default.
- W4385152505 hasRelatedWork W3044757496 @default.
- W4385152505 hasRelatedWork W4255504749 @default.
- W4385152505 isParatext "false" @default.
- W4385152505 isRetracted "false" @default.
- W4385152505 workType "book-chapter" @default.