Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385163913> ?p ?o ?g. }
- W4385163913 endingPage "110713" @default.
- W4385163913 startingPage "110713" @default.
- W4385163913 abstract "Decoding brain activity is conducive to the breakthrough of brain-computer interface (BCI) technology. The development of artificial intelligence (AI) continually promotes the progress of brain language decoding technology. Existent research has mainly focused on a single modality and paid insufficient attention to AI methods. Therefore, our objective is to provide an overview of relevant decoding research from the perspective of different modalities and methodologies. The modalities involve text, speech, image, and video, whereas the core method is using AI-built decoders to translate brain signals induced by multimodal stimuli into text or vocal language. The semantic information of brain activity can be successfully decoded into a language at various levels, ranging from words through sentences to discourses. However, the decoding effect is affected by various factors, such as the decoding model, vector representation model, and brain regions. Challenges and future directions are also discussed. The advances in brain language decoding and BCI technology will potentially assist patients with clinical aphasia in regaining the ability to communicate." @default.
- W4385163913 created "2023-07-24" @default.
- W4385163913 creator A5011906037 @default.
- W4385163913 creator A5038994209 @default.
- W4385163913 creator A5049812029 @default.
- W4385163913 creator A5064832662 @default.
- W4385163913 date "2023-09-01" @default.
- W4385163913 modified "2023-10-10" @default.
- W4385163913 title "Artificial Intelligence Based Multimodal Language Decoding from Brain Activity: A Review" @default.
- W4385163913 cites W1488659701 @default.
- W4385163913 cites W1817561967 @default.
- W4385163913 cites W1905882502 @default.
- W4385163913 cites W1985495286 @default.
- W4385163913 cites W1987709426 @default.
- W4385163913 cites W1987783078 @default.
- W4385163913 cites W1998697470 @default.
- W4385163913 cites W2014738019 @default.
- W4385163913 cites W2023113251 @default.
- W4385163913 cites W2027293072 @default.
- W4385163913 cites W2044952488 @default.
- W4385163913 cites W2053637307 @default.
- W4385163913 cites W2060623117 @default.
- W4385163913 cites W2064675550 @default.
- W4385163913 cites W2079735306 @default.
- W4385163913 cites W2081180575 @default.
- W4385163913 cites W2081580037 @default.
- W4385163913 cites W2095849484 @default.
- W4385163913 cites W2110061489 @default.
- W4385163913 cites W2126810579 @default.
- W4385163913 cites W2150579376 @default.
- W4385163913 cites W2168217710 @default.
- W4385163913 cites W2190809665 @default.
- W4385163913 cites W2250539671 @default.
- W4385163913 cites W2251771443 @default.
- W4385163913 cites W2294429012 @default.
- W4385163913 cites W2344975321 @default.
- W4385163913 cites W2464317109 @default.
- W4385163913 cites W2517609197 @default.
- W4385163913 cites W2528108497 @default.
- W4385163913 cites W2560473548 @default.
- W4385163913 cites W2561529111 @default.
- W4385163913 cites W2618530766 @default.
- W4385163913 cites W2735828512 @default.
- W4385163913 cites W2743987074 @default.
- W4385163913 cites W2760728148 @default.
- W4385163913 cites W2760860681 @default.
- W4385163913 cites W2761532371 @default.
- W4385163913 cites W2782213998 @default.
- W4385163913 cites W2790404832 @default.
- W4385163913 cites W2797340155 @default.
- W4385163913 cites W2901979615 @default.
- W4385163913 cites W2904996081 @default.
- W4385163913 cites W2909250228 @default.
- W4385163913 cites W2917615669 @default.
- W4385163913 cites W2940585064 @default.
- W4385163913 cites W2962739339 @default.
- W4385163913 cites W2963019816 @default.
- W4385163913 cites W2963341661 @default.
- W4385163913 cites W2969245029 @default.
- W4385163913 cites W2980481100 @default.
- W4385163913 cites W3013691153 @default.
- W4385163913 cites W3015920691 @default.
- W4385163913 cites W3028022467 @default.
- W4385163913 cites W3049353929 @default.
- W4385163913 cites W3080883198 @default.
- W4385163913 cites W3082312302 @default.
- W4385163913 cites W3090157547 @default.
- W4385163913 cites W3092695273 @default.
- W4385163913 cites W3111613054 @default.
- W4385163913 cites W3127174957 @default.
- W4385163913 cites W3186134013 @default.
- W4385163913 cites W3194491479 @default.
- W4385163913 cites W3196226472 @default.
- W4385163913 cites W4200271642 @default.
- W4385163913 cites W4200627592 @default.
- W4385163913 cites W4205130185 @default.
- W4385163913 cites W4234173777 @default.
- W4385163913 cites W4239510810 @default.
- W4385163913 cites W4282936527 @default.
- W4385163913 cites W62405817 @default.
- W4385163913 doi "https://doi.org/10.1016/j.brainresbull.2023.110713" @default.
- W4385163913 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37487829" @default.
- W4385163913 hasPublicationYear "2023" @default.
- W4385163913 type Work @default.
- W4385163913 citedByCount "0" @default.
- W4385163913 crossrefType "journal-article" @default.
- W4385163913 hasAuthorship W4385163913A5011906037 @default.
- W4385163913 hasAuthorship W4385163913A5038994209 @default.
- W4385163913 hasAuthorship W4385163913A5049812029 @default.
- W4385163913 hasAuthorship W4385163913A5064832662 @default.
- W4385163913 hasBestOaLocation W43851639131 @default.
- W4385163913 hasConcept C113843644 @default.
- W4385163913 hasConcept C120843803 @default.
- W4385163913 hasConcept C129307140 @default.
- W4385163913 hasConcept C144024400 @default.
- W4385163913 hasConcept C154945302 @default.
- W4385163913 hasConcept C15744967 @default.
- W4385163913 hasConcept C157915830 @default.