Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385187266> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W4385187266 abstract "This paper presents an ensemble machine-learning approach to monitor the blood volume decomposition state for early hypovolemia detection. Hypovolemia is one of the major causes of preventable deaths in trauma cases. The proposed algorithm discriminates hypovolemia from normovolemia and further classifies hypovolemia into relative and absolute hypovolemia. The algorithms for blood volume classification are analyzed by extracting 13 distinct features from multi-modal physiological signals including Photoplethysmogram, Electrocardiogram, and Seismocardiogram. We compared different Machine Learning classifiers for the multi-class classification problem. We have validated our algorithm on a publicly available dataset collected from six animals undergoing normovolemia, relative hypovolemia, and absolute hypovolemia conditions. The best-performing algorithm is the Artificial Neural Network- (ANN) for the normovolemia/hypovolemia classifier with an accuracy of 93.2% and an F1-score of 0.97. For the absolute/relative hypovolemia (AH-RH) classifier, Long Short-Term Memory offers an accuracy of 95.1% and an F1-score of 0.97. The proposed classifiers outperform the state-of-the-art algorithms and achieve the highest accuracy and F1-score, serving as a potential decision-support tool to observe blood volume decomposition state and help develop context-sensitive hypovolemia therapeutic strategies." @default.
- W4385187266 created "2023-07-25" @default.
- W4385187266 creator A5017185283 @default.
- W4385187266 creator A5085765795 @default.
- W4385187266 date "2023-05-21" @default.
- W4385187266 modified "2023-10-17" @default.
- W4385187266 title "Monitoring Blood Volume Decomposition State for Traumatic Stress-Induced Hemorrhage via Wearable Sensing and Ensemble Learning" @default.
- W4385187266 cites W1920444788 @default.
- W4385187266 cites W1952463904 @default.
- W4385187266 cites W1999301805 @default.
- W4385187266 cites W2147941365 @default.
- W4385187266 cites W2736693043 @default.
- W4385187266 cites W2739616164 @default.
- W4385187266 cites W2794844781 @default.
- W4385187266 cites W2798927217 @default.
- W4385187266 cites W2907893436 @default.
- W4385187266 cites W2943612909 @default.
- W4385187266 cites W2982179931 @default.
- W4385187266 cites W3011056083 @default.
- W4385187266 cites W3043956964 @default.
- W4385187266 cites W3138036575 @default.
- W4385187266 cites W4200165088 @default.
- W4385187266 cites W4205932157 @default.
- W4385187266 cites W4211165660 @default.
- W4385187266 cites W4220899488 @default.
- W4385187266 cites W4285118950 @default.
- W4385187266 cites W4292862515 @default.
- W4385187266 doi "https://doi.org/10.1109/iscas46773.2023.10181387" @default.
- W4385187266 hasPublicationYear "2023" @default.
- W4385187266 type Work @default.
- W4385187266 citedByCount "0" @default.
- W4385187266 crossrefType "proceedings-article" @default.
- W4385187266 hasAuthorship W4385187266A5017185283 @default.
- W4385187266 hasAuthorship W4385187266A5085765795 @default.
- W4385187266 hasConcept C119857082 @default.
- W4385187266 hasConcept C154945302 @default.
- W4385187266 hasConcept C2781309813 @default.
- W4385187266 hasConcept C41008148 @default.
- W4385187266 hasConcept C42219234 @default.
- W4385187266 hasConcept C71924100 @default.
- W4385187266 hasConceptScore W4385187266C119857082 @default.
- W4385187266 hasConceptScore W4385187266C154945302 @default.
- W4385187266 hasConceptScore W4385187266C2781309813 @default.
- W4385187266 hasConceptScore W4385187266C41008148 @default.
- W4385187266 hasConceptScore W4385187266C42219234 @default.
- W4385187266 hasConceptScore W4385187266C71924100 @default.
- W4385187266 hasLocation W43851872661 @default.
- W4385187266 hasOpenAccess W4385187266 @default.
- W4385187266 hasPrimaryLocation W43851872661 @default.
- W4385187266 hasRelatedWork W2338545812 @default.
- W4385187266 hasRelatedWork W2748952813 @default.
- W4385187266 hasRelatedWork W2899084033 @default.
- W4385187266 hasRelatedWork W2961085424 @default.
- W4385187266 hasRelatedWork W3046775127 @default.
- W4385187266 hasRelatedWork W4285260836 @default.
- W4385187266 hasRelatedWork W4286629047 @default.
- W4385187266 hasRelatedWork W4306321456 @default.
- W4385187266 hasRelatedWork W4306674287 @default.
- W4385187266 hasRelatedWork W4224009465 @default.
- W4385187266 isParatext "false" @default.
- W4385187266 isRetracted "false" @default.
- W4385187266 workType "article" @default.