Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385190711> ?p ?o ?g. }
- W4385190711 endingPage "533" @default.
- W4385190711 startingPage "510" @default.
- W4385190711 abstract "Language learners track conditional probabilities to find words in continuous speech and to map words and objects across ambiguous contexts. It remains unclear, however, whether learners can leverage the structure of the linguistic input to do both tasks at the same time. To explore this question, we combined speech segmentation and cross-situational word learning into a single task. In Experiment 1, when adults (N = 60) simultaneously segmented continuous speech and mapped the newly segmented words to objects, they demonstrated better performance than when either task was performed alone. However, when the speech stream had conflicting statistics, participants were able to correctly map words to objects, but were at chance level on speech segmentation. In Experiment 2, we used a more sensitive speech segmentation measure to find that adults (N = 35), exposed to the same conflicting speech stream, correctly identified non-words as such, but were still unable to discriminate between words and part-words. Again, mapping was above chance. Our study suggests that learners can track multiple sources of statistical information to find and map words to objects in noisy environments. It also prompts questions on how to effectively measure the knowledge arising from these learning experiences." @default.
- W4385190711 created "2023-07-25" @default.
- W4385190711 creator A5057568209 @default.
- W4385190711 creator A5068587659 @default.
- W4385190711 creator A5076544479 @default.
- W4385190711 creator A5084417544 @default.
- W4385190711 date "2023-01-01" @default.
- W4385190711 modified "2023-09-24" @default.
- W4385190711 title "Speech Segmentation and Cross-Situational Word Learning in Parallel" @default.
- W4385190711 cites W1525046078 @default.
- W4385190711 cites W1525264136 @default.
- W4385190711 cites W1951724000 @default.
- W4385190711 cites W1966387021 @default.
- W4385190711 cites W1967231150 @default.
- W4385190711 cites W1980862600 @default.
- W4385190711 cites W1987904486 @default.
- W4385190711 cites W1989914796 @default.
- W4385190711 cites W1993755070 @default.
- W4385190711 cites W1993768374 @default.
- W4385190711 cites W1993984071 @default.
- W4385190711 cites W2008129488 @default.
- W4385190711 cites W2020868331 @default.
- W4385190711 cites W2045213847 @default.
- W4385190711 cites W2059168261 @default.
- W4385190711 cites W2069048904 @default.
- W4385190711 cites W2071402670 @default.
- W4385190711 cites W2078148419 @default.
- W4385190711 cites W2079597034 @default.
- W4385190711 cites W2094029940 @default.
- W4385190711 cites W2094295818 @default.
- W4385190711 cites W2098717046 @default.
- W4385190711 cites W2102198428 @default.
- W4385190711 cites W2115197214 @default.
- W4385190711 cites W2120886319 @default.
- W4385190711 cites W2129168188 @default.
- W4385190711 cites W2130890537 @default.
- W4385190711 cites W2133414707 @default.
- W4385190711 cites W2133488619 @default.
- W4385190711 cites W2141845152 @default.
- W4385190711 cites W2142375640 @default.
- W4385190711 cites W2143022183 @default.
- W4385190711 cites W2149191429 @default.
- W4385190711 cites W2156026268 @default.
- W4385190711 cites W2160527964 @default.
- W4385190711 cites W2161947505 @default.
- W4385190711 cites W2162018888 @default.
- W4385190711 cites W2162498647 @default.
- W4385190711 cites W2166571083 @default.
- W4385190711 cites W2167205507 @default.
- W4385190711 cites W2272256577 @default.
- W4385190711 cites W2415378728 @default.
- W4385190711 cites W2530471549 @default.
- W4385190711 cites W2552481770 @default.
- W4385190711 cites W2553608650 @default.
- W4385190711 cites W2589273976 @default.
- W4385190711 cites W2593277576 @default.
- W4385190711 cites W2751778071 @default.
- W4385190711 cites W2766298282 @default.
- W4385190711 cites W2790065565 @default.
- W4385190711 cites W2791671258 @default.
- W4385190711 cites W2883508367 @default.
- W4385190711 cites W2888253349 @default.
- W4385190711 cites W2913606428 @default.
- W4385190711 cites W2948672598 @default.
- W4385190711 cites W2998800241 @default.
- W4385190711 cites W3016455283 @default.
- W4385190711 cites W3042662801 @default.
- W4385190711 cites W3082351043 @default.
- W4385190711 cites W3113132966 @default.
- W4385190711 cites W3135356928 @default.
- W4385190711 cites W3156538706 @default.
- W4385190711 cites W3164575291 @default.
- W4385190711 cites W3172627932 @default.
- W4385190711 cites W3173403369 @default.
- W4385190711 cites W3217178535 @default.
- W4385190711 cites W4200094488 @default.
- W4385190711 cites W4200248493 @default.
- W4385190711 cites W4240788953 @default.
- W4385190711 cites W4297461143 @default.
- W4385190711 cites W2743641858 @default.
- W4385190711 doi "https://doi.org/10.1162/opmi_a_00095" @default.
- W4385190711 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37637304" @default.
- W4385190711 hasPublicationYear "2023" @default.
- W4385190711 type Work @default.
- W4385190711 citedByCount "0" @default.
- W4385190711 crossrefType "journal-article" @default.
- W4385190711 hasAuthorship W4385190711A5057568209 @default.
- W4385190711 hasAuthorship W4385190711A5068587659 @default.
- W4385190711 hasAuthorship W4385190711A5076544479 @default.
- W4385190711 hasAuthorship W4385190711A5084417544 @default.
- W4385190711 hasBestOaLocation W43851907111 @default.
- W4385190711 hasConcept C138885662 @default.
- W4385190711 hasConcept C153083717 @default.
- W4385190711 hasConcept C154945302 @default.
- W4385190711 hasConcept C162324750 @default.
- W4385190711 hasConcept C187736073 @default.
- W4385190711 hasConcept C204321447 @default.
- W4385190711 hasConcept C207030507 @default.