Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385192885> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W4385192885 abstract "Because of its dependability, transparency, and decentralized nature, blockchain technology is gaining more and more traction as a potential component of mobile application development. The high storage and compute requirements of crucial tasks, such as mining blockchains and using apps that need a lot of resources, may make it difficult for blockchain applications to run on mobile devices. We suggest a wireless edge computing-based blockchain networks to address this issue (MEC). A set of MUs function as miner in such system through wirelessly transmitting its information processing & mine tasks to a Service layer nearby. As a result, the tasks can be finished faster. We structure work dumping, client anonymity preservation, & miner income as a hybrid optimization problem that is treated as a Markov decision mechanism in order to reduce the program's long-term utility for job transferring and increase safety standards for all blockchain consumers. As a result, we can raise the bar for safety for every blockchain consumers. We first provide an unloading architecture for reinforcement learning (RL). Beginning with a reinforcement learning (RL) unloading architecture, we allow MUs to choose the best unloading options depending just on blockchain transactions statuses and the wifi range properties that occur among MUs with the MEC servers. We create a deep RL technique employing a deep Q more to enhance the transmitting capabilities for entrepreneurship blockchain apps. Despite any previous understanding of the mechanics of the device, this approach can solve a wide state field. The RL-based unloading methods that have been presented, based on the outcomes of both studies & models, offer a considerable gain to users’ confidentiality, reduce power usage and the quantity of time required for calculation, and do each of these while suffering the following costs:" @default.
- W4385192885 created "2023-07-25" @default.
- W4385192885 creator A5040665859 @default.
- W4385192885 date "2023-05-12" @default.
- W4385192885 modified "2023-09-23" @default.
- W4385192885 title "Application Of Mobile Edge Computing & Deep Learning In Mobile Blockchain For Security And Safty" @default.
- W4385192885 cites W2738891482 @default.
- W4385192885 cites W2786151040 @default.
- W4385192885 cites W2791432311 @default.
- W4385192885 cites W2804985843 @default.
- W4385192885 cites W2805930283 @default.
- W4385192885 cites W2884028929 @default.
- W4385192885 cites W2963666161 @default.
- W4385192885 cites W3101813280 @default.
- W4385192885 cites W3105438352 @default.
- W4385192885 cites W3106445841 @default.
- W4385192885 cites W3173865055 @default.
- W4385192885 cites W4225524921 @default.
- W4385192885 cites W4308585425 @default.
- W4385192885 doi "https://doi.org/10.1109/icacite57410.2023.10183155" @default.
- W4385192885 hasPublicationYear "2023" @default.
- W4385192885 type Work @default.
- W4385192885 citedByCount "0" @default.
- W4385192885 crossrefType "proceedings-article" @default.
- W4385192885 hasAuthorship W4385192885A5040665859 @default.
- W4385192885 hasConcept C115903868 @default.
- W4385192885 hasConcept C120314980 @default.
- W4385192885 hasConcept C149635348 @default.
- W4385192885 hasConcept C154945302 @default.
- W4385192885 hasConcept C2776061582 @default.
- W4385192885 hasConcept C2779687700 @default.
- W4385192885 hasConcept C31258907 @default.
- W4385192885 hasConcept C38652104 @default.
- W4385192885 hasConcept C41008148 @default.
- W4385192885 hasConcept C77019957 @default.
- W4385192885 hasConcept C93996380 @default.
- W4385192885 hasConcept C97541855 @default.
- W4385192885 hasConceptScore W4385192885C115903868 @default.
- W4385192885 hasConceptScore W4385192885C120314980 @default.
- W4385192885 hasConceptScore W4385192885C149635348 @default.
- W4385192885 hasConceptScore W4385192885C154945302 @default.
- W4385192885 hasConceptScore W4385192885C2776061582 @default.
- W4385192885 hasConceptScore W4385192885C2779687700 @default.
- W4385192885 hasConceptScore W4385192885C31258907 @default.
- W4385192885 hasConceptScore W4385192885C38652104 @default.
- W4385192885 hasConceptScore W4385192885C41008148 @default.
- W4385192885 hasConceptScore W4385192885C77019957 @default.
- W4385192885 hasConceptScore W4385192885C93996380 @default.
- W4385192885 hasConceptScore W4385192885C97541855 @default.
- W4385192885 hasLocation W43851928851 @default.
- W4385192885 hasOpenAccess W4385192885 @default.
- W4385192885 hasPrimaryLocation W43851928851 @default.
- W4385192885 hasRelatedWork W2898155611 @default.
- W4385192885 hasRelatedWork W2959276766 @default.
- W4385192885 hasRelatedWork W2989288874 @default.
- W4385192885 hasRelatedWork W3008720662 @default.
- W4385192885 hasRelatedWork W3089142771 @default.
- W4385192885 hasRelatedWork W3111983280 @default.
- W4385192885 hasRelatedWork W3176164341 @default.
- W4385192885 hasRelatedWork W4200573894 @default.
- W4385192885 hasRelatedWork W4206669594 @default.
- W4385192885 hasRelatedWork W4321367011 @default.
- W4385192885 isParatext "false" @default.
- W4385192885 isRetracted "false" @default.
- W4385192885 workType "article" @default.