Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385194932> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4385194932 endingPage "5" @default.
- W4385194932 startingPage "1" @default.
- W4385194932 abstract "Convolutional neural networks (CNN) have attracted considerable interest in seismic interpolation, in these networks, convolution operators are adopted to extract the features of seismic data, and the interpolation network is guided to learn the mapping between the corrupted data and their labels. However, the trained network only captures the interrelationship between data localities due to the local receptive field limitation of the convolution kernel, limiting the accuracy of interpolation. The Transformer uses a self-attention mechanism and has performed well in multiple areas. Motivated by this, we propose a multi-scale Transformer (MST) to restore incomplete seismic data. Based on the self-attention mechanism, the Transformer module calculate multiple groups of self-attention for multi-scale feature maps to capture long-range dependencies; it can recover the detailed information of missing data with higher accuracy. Synthetic and field seismic data interpolation experiments verified the performance of the proposed reconstruction method." @default.
- W4385194932 created "2023-07-25" @default.
- W4385194932 creator A5062811478 @default.
- W4385194932 creator A5085435312 @default.
- W4385194932 creator A5089239586 @default.
- W4385194932 date "2023-01-01" @default.
- W4385194932 modified "2023-09-25" @default.
- W4385194932 title "Seismic Data Interpolation Based on Multi-Scale Transformer" @default.
- W4385194932 cites W1981607562 @default.
- W4385194932 cites W2066539310 @default.
- W4385194932 cites W2073143379 @default.
- W4385194932 cites W2090296963 @default.
- W4385194932 cites W2167651580 @default.
- W4385194932 cites W2170860899 @default.
- W4385194932 cites W2614683497 @default.
- W4385194932 cites W2894410771 @default.
- W4385194932 cites W2966971486 @default.
- W4385194932 cites W2991580101 @default.
- W4385194932 cites W3106758205 @default.
- W4385194932 cites W3106842161 @default.
- W4385194932 cites W3121689249 @default.
- W4385194932 cites W3138516171 @default.
- W4385194932 cites W3207918547 @default.
- W4385194932 cites W4312812783 @default.
- W4385194932 doi "https://doi.org/10.1109/lgrs.2023.3298101" @default.
- W4385194932 hasPublicationYear "2023" @default.
- W4385194932 type Work @default.
- W4385194932 citedByCount "0" @default.
- W4385194932 crossrefType "journal-article" @default.
- W4385194932 hasAuthorship W4385194932A5062811478 @default.
- W4385194932 hasAuthorship W4385194932A5085435312 @default.
- W4385194932 hasAuthorship W4385194932A5089239586 @default.
- W4385194932 hasConcept C104114177 @default.
- W4385194932 hasConcept C11413529 @default.
- W4385194932 hasConcept C114614502 @default.
- W4385194932 hasConcept C119599485 @default.
- W4385194932 hasConcept C124101348 @default.
- W4385194932 hasConcept C127413603 @default.
- W4385194932 hasConcept C137800194 @default.
- W4385194932 hasConcept C153180895 @default.
- W4385194932 hasConcept C154945302 @default.
- W4385194932 hasConcept C165801399 @default.
- W4385194932 hasConcept C33923547 @default.
- W4385194932 hasConcept C41008148 @default.
- W4385194932 hasConcept C45347329 @default.
- W4385194932 hasConcept C50644808 @default.
- W4385194932 hasConcept C66322947 @default.
- W4385194932 hasConcept C67186912 @default.
- W4385194932 hasConcept C74193536 @default.
- W4385194932 hasConcept C77088390 @default.
- W4385194932 hasConcept C81363708 @default.
- W4385194932 hasConceptScore W4385194932C104114177 @default.
- W4385194932 hasConceptScore W4385194932C11413529 @default.
- W4385194932 hasConceptScore W4385194932C114614502 @default.
- W4385194932 hasConceptScore W4385194932C119599485 @default.
- W4385194932 hasConceptScore W4385194932C124101348 @default.
- W4385194932 hasConceptScore W4385194932C127413603 @default.
- W4385194932 hasConceptScore W4385194932C137800194 @default.
- W4385194932 hasConceptScore W4385194932C153180895 @default.
- W4385194932 hasConceptScore W4385194932C154945302 @default.
- W4385194932 hasConceptScore W4385194932C165801399 @default.
- W4385194932 hasConceptScore W4385194932C33923547 @default.
- W4385194932 hasConceptScore W4385194932C41008148 @default.
- W4385194932 hasConceptScore W4385194932C45347329 @default.
- W4385194932 hasConceptScore W4385194932C50644808 @default.
- W4385194932 hasConceptScore W4385194932C66322947 @default.
- W4385194932 hasConceptScore W4385194932C67186912 @default.
- W4385194932 hasConceptScore W4385194932C74193536 @default.
- W4385194932 hasConceptScore W4385194932C77088390 @default.
- W4385194932 hasConceptScore W4385194932C81363708 @default.
- W4385194932 hasFunder F4320321001 @default.
- W4385194932 hasFunder F4320323172 @default.
- W4385194932 hasLocation W43851949321 @default.
- W4385194932 hasOpenAccess W4385194932 @default.
- W4385194932 hasPrimaryLocation W43851949321 @default.
- W4385194932 hasRelatedWork W2110459882 @default.
- W4385194932 hasRelatedWork W2766634277 @default.
- W4385194932 hasRelatedWork W2767651786 @default.
- W4385194932 hasRelatedWork W2912288872 @default.
- W4385194932 hasRelatedWork W2949189996 @default.
- W4385194932 hasRelatedWork W2959500052 @default.
- W4385194932 hasRelatedWork W3006085271 @default.
- W4385194932 hasRelatedWork W3200060857 @default.
- W4385194932 hasRelatedWork W4312417841 @default.
- W4385194932 hasRelatedWork W564581980 @default.
- W4385194932 hasVolume "20" @default.
- W4385194932 isParatext "false" @default.
- W4385194932 isRetracted "false" @default.
- W4385194932 workType "article" @default.