Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385196621> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4385196621 endingPage "345" @default.
- W4385196621 startingPage "327" @default.
- W4385196621 abstract "Curbing the rise in carbon footprints is one of the major endeavors of scientists nowadays. One way of achieving this feat is by trapping carbon dioxide. Researchers have spent most of the twenty-first century studying ways to capture CO2 from higher CO2 concentrations in the air. Nonetheless, the constant ascent in the carbon dioxide levels and lack of effective means which could keep up with this ever-increasing number is compelling scientists to foray into alternative methods. One such method involves employing various adsorbents, such as M OFs containing several open metal sites for CO2 adsorption, to absorb CO2 from lower CO2 concentrations in the air. The authors of this study use machine learning methods to predict open metal sites in computation-ready, experimental metal–organic frameworks (CoRE MOFs). Two models—a deep neural network and a k-nearest neighbors model—were used and compared to verify our hypothesis. This research paper will form a pillar in the field of carbon engineering and a pioneer in the study of carbon capture using MOFs by segmenting them based on a higher probability of adsorption." @default.
- W4385196621 created "2023-07-25" @default.
- W4385196621 creator A5008976748 @default.
- W4385196621 creator A5009975191 @default.
- W4385196621 creator A5015969813 @default.
- W4385196621 creator A5035580856 @default.
- W4385196621 date "2023-01-01" @default.
- W4385196621 modified "2023-10-14" @default.
- W4385196621 title "Detection of Open Metal Sites in Metal–Organic Frameworks Using Machine Learning" @default.
- W4385196621 cites W1963883777 @default.
- W4385196621 cites W1968780456 @default.
- W4385196621 cites W1994040599 @default.
- W4385196621 cites W2011301426 @default.
- W4385196621 cites W2051294624 @default.
- W4385196621 cites W2333186286 @default.
- W4385196621 cites W2342603028 @default.
- W4385196621 cites W2554978116 @default.
- W4385196621 cites W2747746872 @default.
- W4385196621 cites W2767576163 @default.
- W4385196621 cites W2789876780 @default.
- W4385196621 cites W2799969266 @default.
- W4385196621 cites W2811324119 @default.
- W4385196621 cites W2910021759 @default.
- W4385196621 cites W2910278175 @default.
- W4385196621 cites W2919115771 @default.
- W4385196621 cites W2963480208 @default.
- W4385196621 cites W2963686598 @default.
- W4385196621 cites W3088773998 @default.
- W4385196621 doi "https://doi.org/10.1007/978-981-99-3315-0_25" @default.
- W4385196621 hasPublicationYear "2023" @default.
- W4385196621 type Work @default.
- W4385196621 citedByCount "0" @default.
- W4385196621 crossrefType "book-chapter" @default.
- W4385196621 hasAuthorship W4385196621A5008976748 @default.
- W4385196621 hasAuthorship W4385196621A5009975191 @default.
- W4385196621 hasAuthorship W4385196621A5015969813 @default.
- W4385196621 hasAuthorship W4385196621A5035580856 @default.
- W4385196621 hasConcept C104779481 @default.
- W4385196621 hasConcept C105289051 @default.
- W4385196621 hasConcept C11413529 @default.
- W4385196621 hasConcept C127413603 @default.
- W4385196621 hasConcept C140205800 @default.
- W4385196621 hasConcept C150394285 @default.
- W4385196621 hasConcept C154945302 @default.
- W4385196621 hasConcept C178790620 @default.
- W4385196621 hasConcept C179366358 @default.
- W4385196621 hasConcept C185592680 @default.
- W4385196621 hasConcept C191897082 @default.
- W4385196621 hasConcept C192562407 @default.
- W4385196621 hasConcept C41008148 @default.
- W4385196621 hasConcept C530467964 @default.
- W4385196621 hasConcept C544153396 @default.
- W4385196621 hasConcept C78519656 @default.
- W4385196621 hasConceptScore W4385196621C104779481 @default.
- W4385196621 hasConceptScore W4385196621C105289051 @default.
- W4385196621 hasConceptScore W4385196621C11413529 @default.
- W4385196621 hasConceptScore W4385196621C127413603 @default.
- W4385196621 hasConceptScore W4385196621C140205800 @default.
- W4385196621 hasConceptScore W4385196621C150394285 @default.
- W4385196621 hasConceptScore W4385196621C154945302 @default.
- W4385196621 hasConceptScore W4385196621C178790620 @default.
- W4385196621 hasConceptScore W4385196621C179366358 @default.
- W4385196621 hasConceptScore W4385196621C185592680 @default.
- W4385196621 hasConceptScore W4385196621C191897082 @default.
- W4385196621 hasConceptScore W4385196621C192562407 @default.
- W4385196621 hasConceptScore W4385196621C41008148 @default.
- W4385196621 hasConceptScore W4385196621C530467964 @default.
- W4385196621 hasConceptScore W4385196621C544153396 @default.
- W4385196621 hasConceptScore W4385196621C78519656 @default.
- W4385196621 hasLocation W43851966211 @default.
- W4385196621 hasOpenAccess W4385196621 @default.
- W4385196621 hasPrimaryLocation W43851966211 @default.
- W4385196621 hasRelatedWork W2005154776 @default.
- W4385196621 hasRelatedWork W2388159269 @default.
- W4385196621 hasRelatedWork W2540205867 @default.
- W4385196621 hasRelatedWork W2899084033 @default.
- W4385196621 hasRelatedWork W3147827585 @default.
- W4385196621 hasRelatedWork W3195910590 @default.
- W4385196621 hasRelatedWork W4226178161 @default.
- W4385196621 hasRelatedWork W4290805714 @default.
- W4385196621 hasRelatedWork W4312220430 @default.
- W4385196621 hasRelatedWork W4360859083 @default.
- W4385196621 isParatext "false" @default.
- W4385196621 isRetracted "false" @default.
- W4385196621 workType "book-chapter" @default.