Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385199208> ?p ?o ?g. }
- W4385199208 endingPage "25" @default.
- W4385199208 startingPage "1" @default.
- W4385199208 abstract "The quality monitoring technique for Cement stabilised earth blocks (CSEBs) is so challenging that it is often neglected. This study has investigated the possibility of using machine learning to predict the compressive strength of CSEBs based on cement content, electrical resistivity and Ultrasonic pulse velocity (UPV) as a potential way to enhance quality control. The study considered three types of soil and different cement content in the preparation of CSEBs with 10 different cement-soil mixtures. Various machine learning models were proposed to predict the compressive strength of CSEBs. The models were evaluated using 180 experimental datasets, and the best model for predicting the compressive strength of CSEBs was selected. The ANN and BTR models performed better than the other machine learning models tested in this study for predicting the compressive strength of CSEBs. The results show that a combination of cement content, electrical resistivity and UPV can be used to assess the quality of CSEBs more accurately, which can contribute to the knowledge base and be applied in the real world. Materials scientists and engineers can use reliable predictive models to assess the strength properties of both new and old brick structures without damage or loss of use." @default.
- W4385199208 created "2023-07-25" @default.
- W4385199208 creator A5010650089 @default.
- W4385199208 creator A5081921478 @default.
- W4385199208 date "2023-07-24" @default.
- W4385199208 modified "2023-09-28" @default.
- W4385199208 title "Predicting compressive strength of cement-stabilized earth blocks using machine learning models incorporating cement content, ultrasonic pulse velocity, and electrical resistivity" @default.
- W4385199208 cites W1165277367 @default.
- W4385199208 cites W138018629 @default.
- W4385199208 cites W1973163442 @default.
- W4385199208 cites W2001489955 @default.
- W4385199208 cites W2026709173 @default.
- W4385199208 cites W2032806400 @default.
- W4385199208 cites W2035401278 @default.
- W4385199208 cites W2060909917 @default.
- W4385199208 cites W2086412950 @default.
- W4385199208 cites W2099111151 @default.
- W4385199208 cites W2114352410 @default.
- W4385199208 cites W2135695572 @default.
- W4385199208 cites W2240604171 @default.
- W4385199208 cites W2337083997 @default.
- W4385199208 cites W2529864830 @default.
- W4385199208 cites W2605727069 @default.
- W4385199208 cites W2614947653 @default.
- W4385199208 cites W2621888941 @default.
- W4385199208 cites W2808069763 @default.
- W4385199208 cites W2837801961 @default.
- W4385199208 cites W2889057426 @default.
- W4385199208 cites W2895935184 @default.
- W4385199208 cites W2978504900 @default.
- W4385199208 cites W2980535327 @default.
- W4385199208 cites W2991519087 @default.
- W4385199208 cites W2991522959 @default.
- W4385199208 cites W2992801987 @default.
- W4385199208 cites W3026604541 @default.
- W4385199208 cites W3045731055 @default.
- W4385199208 cites W3124152552 @default.
- W4385199208 cites W3161638567 @default.
- W4385199208 cites W3196151121 @default.
- W4385199208 cites W3198826085 @default.
- W4385199208 cites W3203858961 @default.
- W4385199208 cites W3217295356 @default.
- W4385199208 cites W4200132597 @default.
- W4385199208 cites W4200188649 @default.
- W4385199208 cites W4200440573 @default.
- W4385199208 cites W4205695993 @default.
- W4385199208 cites W4205839167 @default.
- W4385199208 cites W4206535824 @default.
- W4385199208 cites W4210674435 @default.
- W4385199208 cites W4210750266 @default.
- W4385199208 cites W4220716014 @default.
- W4385199208 cites W4231446456 @default.
- W4385199208 cites W4280513756 @default.
- W4385199208 cites W4281552284 @default.
- W4385199208 cites W4286007422 @default.
- W4385199208 cites W4294675787 @default.
- W4385199208 cites W4308275718 @default.
- W4385199208 cites W4308487078 @default.
- W4385199208 cites W4308498506 @default.
- W4385199208 cites W4309047412 @default.
- W4385199208 cites W4310154203 @default.
- W4385199208 cites W4311176862 @default.
- W4385199208 cites W4317567668 @default.
- W4385199208 cites W4318485354 @default.
- W4385199208 cites W4321184225 @default.
- W4385199208 cites W4361006213 @default.
- W4385199208 cites W4376142626 @default.
- W4385199208 cites W4378417910 @default.
- W4385199208 cites W4382938540 @default.
- W4385199208 cites W4384499327 @default.
- W4385199208 doi "https://doi.org/10.1080/10589759.2023.2240940" @default.
- W4385199208 hasPublicationYear "2023" @default.
- W4385199208 type Work @default.
- W4385199208 citedByCount "0" @default.
- W4385199208 crossrefType "journal-article" @default.
- W4385199208 hasAuthorship W4385199208A5010650089 @default.
- W4385199208 hasAuthorship W4385199208A5081921478 @default.
- W4385199208 hasConcept C119599485 @default.
- W4385199208 hasConcept C127413603 @default.
- W4385199208 hasConcept C159985019 @default.
- W4385199208 hasConcept C187320778 @default.
- W4385199208 hasConcept C192562407 @default.
- W4385199208 hasConcept C30407753 @default.
- W4385199208 hasConcept C523993062 @default.
- W4385199208 hasConcept C69990965 @default.
- W4385199208 hasConceptScore W4385199208C119599485 @default.
- W4385199208 hasConceptScore W4385199208C127413603 @default.
- W4385199208 hasConceptScore W4385199208C159985019 @default.
- W4385199208 hasConceptScore W4385199208C187320778 @default.
- W4385199208 hasConceptScore W4385199208C192562407 @default.
- W4385199208 hasConceptScore W4385199208C30407753 @default.
- W4385199208 hasConceptScore W4385199208C523993062 @default.
- W4385199208 hasConceptScore W4385199208C69990965 @default.
- W4385199208 hasLocation W43851992081 @default.
- W4385199208 hasOpenAccess W4385199208 @default.
- W4385199208 hasPrimaryLocation W43851992081 @default.
- W4385199208 hasRelatedWork W1990252345 @default.
- W4385199208 hasRelatedWork W2031897272 @default.