Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385200081> ?p ?o ?g. }
- W4385200081 endingPage "1951" @default.
- W4385200081 startingPage "1937" @default.
- W4385200081 abstract "Abstract Longitudinal video archives of behaviour are crucial for examining how sociality shifts over the lifespan in wild animals. New approaches adopting computer vision technology hold serious potential to capture interactions and associations between individuals in video at large scale; however, such approaches need a priori validation, as methods of sampling and defining edges for social networks can substantially impact results. Here, we apply a deep learning face recognition model to generate association networks of wild chimpanzees using 17 years of a video archive from Bossou, Guinea. Using 7 million detections from 100 h of video footage, we examined how varying the size of fixed temporal windows (i.e. aggregation rates) for defining edges impact individual‐level gregariousness scores. The highest and lowest aggregation rates produced divergent values, indicating that different rates of aggregation capture different association patterns. To avoid any potential bias from false positives and negatives from automated detection, an intermediate aggregation rate should be used to reduce error across multiple variables. Individual‐level network‐derived traits were highly repeatable, indicating strong inter‐individual variation in association patterns across years and highlighting the reliability of the method to capture consistent individual‐level patterns of sociality over time. We found no reliable effects of age and sex on social behaviour and despite a significant drop in population size over the study period, individual estimates of gregariousness remained stable over time. We believe that our automated framework will be of broad utility to ethology and conservation, enabling the investigation of animal social behaviour from video footage at large scale, low cost and high reproducibility. We explore the implications of our findings for understanding variation in sociality patterns in wild ape populations. Furthermore, we examine the trade‐offs involved in using face recognition technology to generate social networks and sociality measures. Finally, we outline the steps for the broader deployment of this technology for analysis of large‐scale datasets in ecology and evolution." @default.
- W4385200081 created "2023-07-25" @default.
- W4385200081 creator A5003551603 @default.
- W4385200081 creator A5009828109 @default.
- W4385200081 creator A5013009899 @default.
- W4385200081 creator A5022582453 @default.
- W4385200081 creator A5042480969 @default.
- W4385200081 creator A5042923032 @default.
- W4385200081 creator A5053596436 @default.
- W4385200081 creator A5067083545 @default.
- W4385200081 date "2023-07-24" @default.
- W4385200081 modified "2023-10-14" @default.
- W4385200081 title "Automated face recognition using deep neural networks produces robust primate social networks and sociality measures" @default.
- W4385200081 cites W1538363244 @default.
- W4385200081 cites W1609810996 @default.
- W4385200081 cites W1828958803 @default.
- W4385200081 cites W190406611 @default.
- W4385200081 cites W1919314394 @default.
- W4385200081 cites W1941790528 @default.
- W4385200081 cites W1942481705 @default.
- W4385200081 cites W1973569133 @default.
- W4385200081 cites W1973655881 @default.
- W4385200081 cites W1977599018 @default.
- W4385200081 cites W1982707930 @default.
- W4385200081 cites W1989633372 @default.
- W4385200081 cites W1990795463 @default.
- W4385200081 cites W2003491421 @default.
- W4385200081 cites W2021648870 @default.
- W4385200081 cites W2025638938 @default.
- W4385200081 cites W2032355242 @default.
- W4385200081 cites W2034920727 @default.
- W4385200081 cites W2035993431 @default.
- W4385200081 cites W2036614090 @default.
- W4385200081 cites W2042327942 @default.
- W4385200081 cites W2043964967 @default.
- W4385200081 cites W2045443942 @default.
- W4385200081 cites W2055032654 @default.
- W4385200081 cites W2067816506 @default.
- W4385200081 cites W2074351368 @default.
- W4385200081 cites W2077474668 @default.
- W4385200081 cites W2089189011 @default.
- W4385200081 cites W2094691793 @default.
- W4385200081 cites W2110114082 @default.
- W4385200081 cites W2169222380 @default.
- W4385200081 cites W2171848690 @default.
- W4385200081 cites W2228872556 @default.
- W4385200081 cites W230728383 @default.
- W4385200081 cites W2519190694 @default.
- W4385200081 cites W2605891993 @default.
- W4385200081 cites W2606101712 @default.
- W4385200081 cites W2612470377 @default.
- W4385200081 cites W2614835937 @default.
- W4385200081 cites W2763434918 @default.
- W4385200081 cites W2767556927 @default.
- W4385200081 cites W2778049497 @default.
- W4385200081 cites W2779661378 @default.
- W4385200081 cites W2783564415 @default.
- W4385200081 cites W2786358356 @default.
- W4385200081 cites W2797674354 @default.
- W4385200081 cites W2805660348 @default.
- W4385200081 cites W2896727047 @default.
- W4385200081 cites W2919115771 @default.
- W4385200081 cites W2950100524 @default.
- W4385200081 cites W2971892976 @default.
- W4385200081 cites W2980564103 @default.
- W4385200081 cites W2990943996 @default.
- W4385200081 cites W3002822481 @default.
- W4385200081 cites W3003992198 @default.
- W4385200081 cites W3011714072 @default.
- W4385200081 cites W3012395662 @default.
- W4385200081 cites W3015254786 @default.
- W4385200081 cites W3034584635 @default.
- W4385200081 cites W3038699438 @default.
- W4385200081 cites W3038856472 @default.
- W4385200081 cites W3046823700 @default.
- W4385200081 cites W3048671820 @default.
- W4385200081 cites W3087197567 @default.
- W4385200081 cites W3087454811 @default.
- W4385200081 cites W3093414036 @default.
- W4385200081 cites W3094116377 @default.
- W4385200081 cites W3137407543 @default.
- W4385200081 cites W3153999239 @default.
- W4385200081 cites W3164561746 @default.
- W4385200081 cites W3172292024 @default.
- W4385200081 cites W3205387978 @default.
- W4385200081 cites W3211950441 @default.
- W4385200081 cites W4298314905 @default.
- W4385200081 cites W4308523652 @default.
- W4385200081 cites W73104963 @default.
- W4385200081 cites W895171129 @default.
- W4385200081 doi "https://doi.org/10.1111/2041-210x.14181" @default.
- W4385200081 hasPublicationYear "2023" @default.
- W4385200081 type Work @default.
- W4385200081 citedByCount "0" @default.
- W4385200081 crossrefType "journal-article" @default.
- W4385200081 hasAuthorship W4385200081A5003551603 @default.
- W4385200081 hasAuthorship W4385200081A5009828109 @default.
- W4385200081 hasAuthorship W4385200081A5013009899 @default.