Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385201215> ?p ?o ?g. }
- W4385201215 endingPage "870" @default.
- W4385201215 startingPage "870" @default.
- W4385201215 abstract "Multi-contrast magnetic resonance imaging (MRI) is wildly applied to identify tuberous sclerosis complex (TSC) children in a clinic. In this work, a deep convolutional neural network with multi-contrast MRI is proposed to diagnose pediatric TSC. Firstly, by combining T2W and FLAIR images, a new synthesis modality named FLAIR3 was created to enhance the contrast between TSC lesions and normal brain tissues. After that, a deep weighted fusion network (DWF-net) using a late fusion strategy is proposed to diagnose TSC children. In experiments, a total of 680 children were enrolled, including 331 healthy children and 349 TSC children. The experimental results indicate that FLAIR3 successfully enhances the visibility of TSC lesions and improves the classification performance. Additionally, the proposed DWF-net delivers a superior classification performance compared to previous methods, achieving an AUC of 0.998 and an accuracy of 0.985. The proposed method has the potential to be a reliable computer-aided diagnostic tool for assisting radiologists in diagnosing TSC children." @default.
- W4385201215 created "2023-07-25" @default.
- W4385201215 creator A5010510025 @default.
- W4385201215 creator A5015746241 @default.
- W4385201215 creator A5046317936 @default.
- W4385201215 creator A5046708388 @default.
- W4385201215 creator A5047536759 @default.
- W4385201215 creator A5062885952 @default.
- W4385201215 creator A5068399871 @default.
- W4385201215 creator A5073848799 @default.
- W4385201215 creator A5076507545 @default.
- W4385201215 creator A5084005785 @default.
- W4385201215 creator A5084300536 @default.
- W4385201215 creator A5087850504 @default.
- W4385201215 date "2023-07-22" @default.
- W4385201215 modified "2023-09-27" @default.
- W4385201215 title "Recognizing Pediatric Tuberous Sclerosis Complex Based on Multi-Contrast MRI and Deep Weighted Fusion Network" @default.
- W4385201215 cites W1504135955 @default.
- W4385201215 cites W1886226115 @default.
- W4385201215 cites W2016834366 @default.
- W4385201215 cites W2062240034 @default.
- W4385201215 cites W2112592011 @default.
- W4385201215 cites W2194775991 @default.
- W4385201215 cites W2252513407 @default.
- W4385201215 cites W2284198383 @default.
- W4385201215 cites W2346812984 @default.
- W4385201215 cites W2579617530 @default.
- W4385201215 cites W2588870577 @default.
- W4385201215 cites W2752782242 @default.
- W4385201215 cites W2766480612 @default.
- W4385201215 cites W2848735020 @default.
- W4385201215 cites W2968446587 @default.
- W4385201215 cites W2990366895 @default.
- W4385201215 cites W3007375197 @default.
- W4385201215 cites W3014948924 @default.
- W4385201215 cites W3019180786 @default.
- W4385201215 cites W3026200185 @default.
- W4385201215 cites W3034118572 @default.
- W4385201215 cites W3043039028 @default.
- W4385201215 cites W3092783643 @default.
- W4385201215 cites W3100483282 @default.
- W4385201215 cites W3102018640 @default.
- W4385201215 cites W3108867906 @default.
- W4385201215 cites W3150534290 @default.
- W4385201215 cites W3167250384 @default.
- W4385201215 cites W3203058734 @default.
- W4385201215 cites W3215280593 @default.
- W4385201215 cites W3215366433 @default.
- W4385201215 cites W3215641582 @default.
- W4385201215 cites W4200181029 @default.
- W4385201215 cites W4200500559 @default.
- W4385201215 cites W4214858690 @default.
- W4385201215 cites W4220903360 @default.
- W4385201215 cites W4220939798 @default.
- W4385201215 cites W4225277622 @default.
- W4385201215 cites W4294975480 @default.
- W4385201215 doi "https://doi.org/10.3390/bioengineering10070870" @default.
- W4385201215 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37508897" @default.
- W4385201215 hasPublicationYear "2023" @default.
- W4385201215 type Work @default.
- W4385201215 citedByCount "0" @default.
- W4385201215 crossrefType "journal-article" @default.
- W4385201215 hasAuthorship W4385201215A5010510025 @default.
- W4385201215 hasAuthorship W4385201215A5015746241 @default.
- W4385201215 hasAuthorship W4385201215A5046317936 @default.
- W4385201215 hasAuthorship W4385201215A5046708388 @default.
- W4385201215 hasAuthorship W4385201215A5047536759 @default.
- W4385201215 hasAuthorship W4385201215A5062885952 @default.
- W4385201215 hasAuthorship W4385201215A5068399871 @default.
- W4385201215 hasAuthorship W4385201215A5073848799 @default.
- W4385201215 hasAuthorship W4385201215A5076507545 @default.
- W4385201215 hasAuthorship W4385201215A5084005785 @default.
- W4385201215 hasAuthorship W4385201215A5084300536 @default.
- W4385201215 hasAuthorship W4385201215A5087850504 @default.
- W4385201215 hasBestOaLocation W43852012151 @default.
- W4385201215 hasConcept C101070640 @default.
- W4385201215 hasConcept C120665830 @default.
- W4385201215 hasConcept C121332964 @default.
- W4385201215 hasConcept C123403432 @default.
- W4385201215 hasConcept C126838900 @default.
- W4385201215 hasConcept C143409427 @default.
- W4385201215 hasConcept C154945302 @default.
- W4385201215 hasConcept C2776502983 @default.
- W4385201215 hasConcept C2778980267 @default.
- W4385201215 hasConcept C2780226545 @default.
- W4385201215 hasConcept C3018181011 @default.
- W4385201215 hasConcept C41008148 @default.
- W4385201215 hasConcept C71924100 @default.
- W4385201215 hasConcept C81363708 @default.
- W4385201215 hasConceptScore W4385201215C101070640 @default.
- W4385201215 hasConceptScore W4385201215C120665830 @default.
- W4385201215 hasConceptScore W4385201215C121332964 @default.
- W4385201215 hasConceptScore W4385201215C123403432 @default.
- W4385201215 hasConceptScore W4385201215C126838900 @default.
- W4385201215 hasConceptScore W4385201215C143409427 @default.
- W4385201215 hasConceptScore W4385201215C154945302 @default.
- W4385201215 hasConceptScore W4385201215C2776502983 @default.
- W4385201215 hasConceptScore W4385201215C2778980267 @default.