Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385201306> ?p ?o ?g. }
- W4385201306 endingPage "1506" @default.
- W4385201306 startingPage "1506" @default.
- W4385201306 abstract "The subjective and empirical setting of hyperparameters in the random forest (RF) model may lead to decreased model performance. To address this, our study applies the particle swarm optimization (PSO) algorithm to select the optimal parameters of the RF model, with the goal of enhancing model performance. We employ the optimized ensemble model (PSO-RF) to create a fire risk map for Jiushan National Forest Park in Anhui Province, China, thereby filling the research gap in this region’s forest fire studies. Based on collinearity tests and previous research results, we selected eight fire driving factors, including topography, climate, human activities, and vegetation for modeling. Additionally, we compare the logistic regression (LR), support vector machine (SVM), and RF models. Lastly, we select the optimal model to evaluate feature importance and generate the fire risk map. Model evaluation results demonstrate that the PSO-RF model performs best (AUC = 0.908), followed by RF (0.877), SVM (0.876), and LR (0.846). In the fire risk map created by the PSO-RF model, 70.73% of the area belongs to the normal management zone, while 15.23% is classified as a fire alert zone. The feature importance analysis of the PSO-RF model reveals that the NDVI is the key fire driving factor in this study area. Through utilizing the PSO algorithm to optimize the RF model, we have addressed the subjective and empirical problems of the RF model hyperparameter setting, thereby enhancing the model’s accuracy and generalization ability." @default.
- W4385201306 created "2023-07-25" @default.
- W4385201306 creator A5026192519 @default.
- W4385201306 creator A5036232375 @default.
- W4385201306 date "2023-07-24" @default.
- W4385201306 modified "2023-10-14" @default.
- W4385201306 title "A Forest Fire Susceptibility Modeling Approach Based on Integration Machine Learning Algorithm" @default.
- W4385201306 cites W1979305736 @default.
- W4385201306 cites W1986947207 @default.
- W4385201306 cites W1991805375 @default.
- W4385201306 cites W2007828469 @default.
- W4385201306 cites W2013669230 @default.
- W4385201306 cites W2042952446 @default.
- W4385201306 cites W2051266130 @default.
- W4385201306 cites W2077273337 @default.
- W4385201306 cites W2085696766 @default.
- W4385201306 cites W2086014296 @default.
- W4385201306 cites W2130013497 @default.
- W4385201306 cites W2153989276 @default.
- W4385201306 cites W2158083870 @default.
- W4385201306 cites W2225976211 @default.
- W4385201306 cites W2275605338 @default.
- W4385201306 cites W2496264785 @default.
- W4385201306 cites W2595436381 @default.
- W4385201306 cites W2601486684 @default.
- W4385201306 cites W2789751949 @default.
- W4385201306 cites W2807698901 @default.
- W4385201306 cites W2809889051 @default.
- W4385201306 cites W2892151252 @default.
- W4385201306 cites W2902544159 @default.
- W4385201306 cites W2905880828 @default.
- W4385201306 cites W2910367420 @default.
- W4385201306 cites W2920802601 @default.
- W4385201306 cites W2945594021 @default.
- W4385201306 cites W2998105145 @default.
- W4385201306 cites W2999298435 @default.
- W4385201306 cites W3095070079 @default.
- W4385201306 cites W3113635604 @default.
- W4385201306 cites W3119180266 @default.
- W4385201306 cites W3155498383 @default.
- W4385201306 cites W3166182933 @default.
- W4385201306 cites W3196247333 @default.
- W4385201306 cites W4213009331 @default.
- W4385201306 cites W4223923442 @default.
- W4385201306 cites W4232533539 @default.
- W4385201306 cites W4283808550 @default.
- W4385201306 cites W4295927810 @default.
- W4385201306 cites W4296569549 @default.
- W4385201306 cites W4312862206 @default.
- W4385201306 cites W4318614123 @default.
- W4385201306 cites W4319288694 @default.
- W4385201306 doi "https://doi.org/10.3390/f14071506" @default.
- W4385201306 hasPublicationYear "2023" @default.
- W4385201306 type Work @default.
- W4385201306 citedByCount "0" @default.
- W4385201306 crossrefType "journal-article" @default.
- W4385201306 hasAuthorship W4385201306A5026192519 @default.
- W4385201306 hasAuthorship W4385201306A5036232375 @default.
- W4385201306 hasBestOaLocation W43852013061 @default.
- W4385201306 hasConcept C11413529 @default.
- W4385201306 hasConcept C119857082 @default.
- W4385201306 hasConcept C119898033 @default.
- W4385201306 hasConcept C12267149 @default.
- W4385201306 hasConcept C124101348 @default.
- W4385201306 hasConcept C154945302 @default.
- W4385201306 hasConcept C169258074 @default.
- W4385201306 hasConcept C22019652 @default.
- W4385201306 hasConcept C41008148 @default.
- W4385201306 hasConcept C50644808 @default.
- W4385201306 hasConcept C85617194 @default.
- W4385201306 hasConcept C8642999 @default.
- W4385201306 hasConceptScore W4385201306C11413529 @default.
- W4385201306 hasConceptScore W4385201306C119857082 @default.
- W4385201306 hasConceptScore W4385201306C119898033 @default.
- W4385201306 hasConceptScore W4385201306C12267149 @default.
- W4385201306 hasConceptScore W4385201306C124101348 @default.
- W4385201306 hasConceptScore W4385201306C154945302 @default.
- W4385201306 hasConceptScore W4385201306C169258074 @default.
- W4385201306 hasConceptScore W4385201306C22019652 @default.
- W4385201306 hasConceptScore W4385201306C41008148 @default.
- W4385201306 hasConceptScore W4385201306C50644808 @default.
- W4385201306 hasConceptScore W4385201306C85617194 @default.
- W4385201306 hasConceptScore W4385201306C8642999 @default.
- W4385201306 hasIssue "7" @default.
- W4385201306 hasLocation W43852013061 @default.
- W4385201306 hasOpenAccess W4385201306 @default.
- W4385201306 hasPrimaryLocation W43852013061 @default.
- W4385201306 hasRelatedWork W1509177177 @default.
- W4385201306 hasRelatedWork W1574414179 @default.
- W4385201306 hasRelatedWork W3155135229 @default.
- W4385201306 hasRelatedWork W4225647658 @default.
- W4385201306 hasRelatedWork W4281702477 @default.
- W4385201306 hasRelatedWork W4297676672 @default.
- W4385201306 hasRelatedWork W4298369531 @default.
- W4385201306 hasRelatedWork W4361279940 @default.
- W4385201306 hasRelatedWork W4362597605 @default.
- W4385201306 hasRelatedWork W4386295066 @default.
- W4385201306 hasVolume "14" @default.