Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385201449> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4385201449 endingPage "1934" @default.
- W4385201449 startingPage "1927" @default.
- W4385201449 abstract "Objectives: To suggest reliable location parameters (central value) in multivariate datasets using data depth procedures in order to reduce the presence of outliers. Methods: Applying depth techniques in both outlier-free and outliercontaining scenarios, the data sets starsCYG and delivery time data are utilized to determine the measure of location. Various classical and robust data depth procedures are used to find the location parameters, namely Mahalanobis depth, Tukey’s half space depth, Projection depth, Zonoid depth, Spatial depth, and L2 Depth (Euclidean Depth). Distance-Distance plot is used for identifying the outliers. Further, it has been researched how well the data depth processes work by computing the parameters under actual and simulation environments, with and without outliers by considering different levels of contaminations (0%, 1%, 2%, 3%, 5%, 10%, 20%, 30%, 40%). Findings: From the two data sets studied, Halfspace depth and Euclidean (using MCD estimator) give the same location parameters if the anomalies are present. These two procedures work equally well and more effectively than the others. The robust depth procedures work well if the outliers are present in the datasets and from the simulation study it can handle a certain level of contamination present in the data set. Novelty: Any dataset that contains outliers makes analysis results risky. Robust statistical techniques can tolerate some getting contaminated. According to the study, even if the data contains outliers, the Depth processes employing robust estimators can withstand a certain amount of contamination and still produce accurate findings. Keywords: Location; Data Depth; Outliers; Mahalanobis Distance; Robust" @default.
- W4385201449 created "2023-07-25" @default.
- W4385201449 creator A5002597095 @default.
- W4385201449 creator A5035298080 @default.
- W4385201449 date "2023-07-23" @default.
- W4385201449 modified "2023-10-16" @default.
- W4385201449 title "Computing Robust Measure of Location on Multivariate Statistical Data Using Euclidean Depth Procedures" @default.
- W4385201449 doi "https://doi.org/10.17485/ijst/v16i26.847" @default.
- W4385201449 hasPublicationYear "2023" @default.
- W4385201449 type Work @default.
- W4385201449 citedByCount "0" @default.
- W4385201449 crossrefType "journal-article" @default.
- W4385201449 hasAuthorship W4385201449A5002597095 @default.
- W4385201449 hasAuthorship W4385201449A5035298080 @default.
- W4385201449 hasBestOaLocation W43852014491 @default.
- W4385201449 hasConcept C105795698 @default.
- W4385201449 hasConcept C119857082 @default.
- W4385201449 hasConcept C120174047 @default.
- W4385201449 hasConcept C124101348 @default.
- W4385201449 hasConcept C153180895 @default.
- W4385201449 hasConcept C154945302 @default.
- W4385201449 hasConcept C161584116 @default.
- W4385201449 hasConcept C162324750 @default.
- W4385201449 hasConcept C176217482 @default.
- W4385201449 hasConcept C185429906 @default.
- W4385201449 hasConcept C1921717 @default.
- W4385201449 hasConcept C21547014 @default.
- W4385201449 hasConcept C2780009758 @default.
- W4385201449 hasConcept C33923547 @default.
- W4385201449 hasConcept C41008148 @default.
- W4385201449 hasConcept C67226441 @default.
- W4385201449 hasConcept C79337645 @default.
- W4385201449 hasConceptScore W4385201449C105795698 @default.
- W4385201449 hasConceptScore W4385201449C119857082 @default.
- W4385201449 hasConceptScore W4385201449C120174047 @default.
- W4385201449 hasConceptScore W4385201449C124101348 @default.
- W4385201449 hasConceptScore W4385201449C153180895 @default.
- W4385201449 hasConceptScore W4385201449C154945302 @default.
- W4385201449 hasConceptScore W4385201449C161584116 @default.
- W4385201449 hasConceptScore W4385201449C162324750 @default.
- W4385201449 hasConceptScore W4385201449C176217482 @default.
- W4385201449 hasConceptScore W4385201449C185429906 @default.
- W4385201449 hasConceptScore W4385201449C1921717 @default.
- W4385201449 hasConceptScore W4385201449C21547014 @default.
- W4385201449 hasConceptScore W4385201449C2780009758 @default.
- W4385201449 hasConceptScore W4385201449C33923547 @default.
- W4385201449 hasConceptScore W4385201449C41008148 @default.
- W4385201449 hasConceptScore W4385201449C67226441 @default.
- W4385201449 hasConceptScore W4385201449C79337645 @default.
- W4385201449 hasIssue "26" @default.
- W4385201449 hasLocation W43852014491 @default.
- W4385201449 hasOpenAccess W4385201449 @default.
- W4385201449 hasPrimaryLocation W43852014491 @default.
- W4385201449 hasRelatedWork W1496142678 @default.
- W4385201449 hasRelatedWork W1580048109 @default.
- W4385201449 hasRelatedWork W2001621291 @default.
- W4385201449 hasRelatedWork W2016755865 @default.
- W4385201449 hasRelatedWork W2069924052 @default.
- W4385201449 hasRelatedWork W2139259411 @default.
- W4385201449 hasRelatedWork W2181899196 @default.
- W4385201449 hasRelatedWork W2216963642 @default.
- W4385201449 hasRelatedWork W3020947724 @default.
- W4385201449 hasRelatedWork W327790220 @default.
- W4385201449 hasVolume "16" @default.
- W4385201449 isParatext "false" @default.
- W4385201449 isRetracted "false" @default.
- W4385201449 workType "article" @default.