Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385201497> ?p ?o ?g. }
- W4385201497 endingPage "8512" @default.
- W4385201497 startingPage "8512" @default.
- W4385201497 abstract "Accurate segmentation of skin lesions is still a challenging task for automatic diagnostic systems because of the significant shape variations and blurred boundaries of the lesions. This paper proposes a multi-scale convolutional neural network, REDAUNet, based on UNet3+ to enhance network performance for practical applications in skin segmentation. First, the network employs a new encoder module composed of four feature extraction layers through two cross-residual (CR) units. This configuration allows the module to extract deep semantic information while avoiding gradient vanishing problems. Subsequently, a lightweight and efficient channel attention (ECA) module is introduced during the encoder’s feature extraction stage. The attention module assigns suitable weights to channels through attention learning and effectively captures inter-channel interaction information. Finally, the densely connected atrous spatial pyramid pooling module (DenseASPP) module is inserted between the encoder and decoder paths. This module integrates dense connections and ASPP, as well as multi-scale information fusion, to recognize lesions of varying sizes. The experimental studies in this paper were constructed on two public skin lesion datasets, namely, ISIC-2018 and ISIC-2017. The experimental results show that our model is more accurate in segmenting lesions of different shapes and achieves state-of-the-art performance in segmentation. In comparison to UNet3+, the proposed REDAUNet model shows improvements of 2.01%, 4.33%, and 2.68% in Dice, Spec, and mIoU metrics, respectively. These results suggest that REDAUNet is well-suited for skin lesion segmentation and can be effectively employed in computer-aided systems." @default.
- W4385201497 created "2023-07-25" @default.
- W4385201497 creator A5021523686 @default.
- W4385201497 creator A5034694275 @default.
- W4385201497 creator A5044592033 @default.
- W4385201497 creator A5052231258 @default.
- W4385201497 date "2023-07-23" @default.
- W4385201497 modified "2023-09-30" @default.
- W4385201497 title "An Improved Multi-Scale Feature Fusion for Skin Lesion Segmentation" @default.
- W4385201497 cites W1507875776 @default.
- W4385201497 cites W1901129140 @default.
- W4385201497 cites W2041987633 @default.
- W4385201497 cites W2049748121 @default.
- W4385201497 cites W2141742651 @default.
- W4385201497 cites W2142259554 @default.
- W4385201497 cites W2194775991 @default.
- W4385201497 cites W2560023338 @default.
- W4385201497 cites W2581082771 @default.
- W4385201497 cites W2799213142 @default.
- W4385201497 cites W2884585870 @default.
- W4385201497 cites W2888358068 @default.
- W4385201497 cites W2928133111 @default.
- W4385201497 cites W2963946669 @default.
- W4385201497 cites W2964098128 @default.
- W4385201497 cites W2964309882 @default.
- W4385201497 cites W3013198566 @default.
- W4385201497 cites W3015788359 @default.
- W4385201497 cites W3026598587 @default.
- W4385201497 cites W3027969476 @default.
- W4385201497 cites W3034552520 @default.
- W4385201497 cites W3040683503 @default.
- W4385201497 cites W3042980549 @default.
- W4385201497 cites W3081752372 @default.
- W4385201497 cites W3085882733 @default.
- W4385201497 cites W3096799072 @default.
- W4385201497 cites W3168491317 @default.
- W4385201497 cites W3170841416 @default.
- W4385201497 cites W3185171819 @default.
- W4385201497 cites W4200015473 @default.
- W4385201497 cites W4221027191 @default.
- W4385201497 cites W4226118487 @default.
- W4385201497 cites W4244042913 @default.
- W4385201497 cites W4283733372 @default.
- W4385201497 cites W4285216172 @default.
- W4385201497 cites W4286768575 @default.
- W4385201497 cites W4295934721 @default.
- W4385201497 cites W4313527340 @default.
- W4385201497 doi "https://doi.org/10.3390/app13148512" @default.
- W4385201497 hasPublicationYear "2023" @default.
- W4385201497 type Work @default.
- W4385201497 citedByCount "1" @default.
- W4385201497 countsByYear W43852014972023 @default.
- W4385201497 crossrefType "journal-article" @default.
- W4385201497 hasAuthorship W4385201497A5021523686 @default.
- W4385201497 hasAuthorship W4385201497A5034694275 @default.
- W4385201497 hasAuthorship W4385201497A5044592033 @default.
- W4385201497 hasAuthorship W4385201497A5052231258 @default.
- W4385201497 hasBestOaLocation W43852014971 @default.
- W4385201497 hasConcept C111919701 @default.
- W4385201497 hasConcept C118505674 @default.
- W4385201497 hasConcept C127162648 @default.
- W4385201497 hasConcept C138885662 @default.
- W4385201497 hasConcept C142575187 @default.
- W4385201497 hasConcept C153180895 @default.
- W4385201497 hasConcept C154945302 @default.
- W4385201497 hasConcept C2524010 @default.
- W4385201497 hasConcept C2776401178 @default.
- W4385201497 hasConcept C31258907 @default.
- W4385201497 hasConcept C31972630 @default.
- W4385201497 hasConcept C33923547 @default.
- W4385201497 hasConcept C41008148 @default.
- W4385201497 hasConcept C41895202 @default.
- W4385201497 hasConcept C52622490 @default.
- W4385201497 hasConcept C70437156 @default.
- W4385201497 hasConcept C81363708 @default.
- W4385201497 hasConcept C89600930 @default.
- W4385201497 hasConceptScore W4385201497C111919701 @default.
- W4385201497 hasConceptScore W4385201497C118505674 @default.
- W4385201497 hasConceptScore W4385201497C127162648 @default.
- W4385201497 hasConceptScore W4385201497C138885662 @default.
- W4385201497 hasConceptScore W4385201497C142575187 @default.
- W4385201497 hasConceptScore W4385201497C153180895 @default.
- W4385201497 hasConceptScore W4385201497C154945302 @default.
- W4385201497 hasConceptScore W4385201497C2524010 @default.
- W4385201497 hasConceptScore W4385201497C2776401178 @default.
- W4385201497 hasConceptScore W4385201497C31258907 @default.
- W4385201497 hasConceptScore W4385201497C31972630 @default.
- W4385201497 hasConceptScore W4385201497C33923547 @default.
- W4385201497 hasConceptScore W4385201497C41008148 @default.
- W4385201497 hasConceptScore W4385201497C41895202 @default.
- W4385201497 hasConceptScore W4385201497C52622490 @default.
- W4385201497 hasConceptScore W4385201497C70437156 @default.
- W4385201497 hasConceptScore W4385201497C81363708 @default.
- W4385201497 hasConceptScore W4385201497C89600930 @default.
- W4385201497 hasIssue "14" @default.
- W4385201497 hasLocation W43852014971 @default.
- W4385201497 hasOpenAccess W4385201497 @default.
- W4385201497 hasPrimaryLocation W43852014971 @default.