Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385201774> ?p ?o ?g. }
- W4385201774 endingPage "6585" @default.
- W4385201774 startingPage "6585" @default.
- W4385201774 abstract "Screening programs for early lung cancer diagnosis are uncommon, primarily due to the challenge of reaching at-risk patients located in rural areas far from medical facilities. To overcome this obstacle, a comprehensive approach is needed that combines mobility, low cost, speed, accuracy, and privacy. One potential solution lies in combining the chest X-ray imaging mode with federated deep learning, ensuring that no single data source can bias the model adversely. This study presents a pre-processing pipeline designed to debias chest X-ray images, thereby enhancing internal classification and external generalization. The pipeline employs a pruning mechanism to train a deep learning model for nodule detection, utilizing the most informative images from a publicly available lung nodule X-ray dataset. Histogram equalization is used to remove systematic differences in image brightness and contrast. Model training is then performed using combinations of lung field segmentation, close cropping, and rib/bone suppression. The resulting deep learning models, generated through this pre-processing pipeline, demonstrate successful generalization on an independent lung nodule dataset. By eliminating confounding variables in chest X-ray images and suppressing signal noise from the bone structures, the proposed deep learning lung nodule detection algorithm achieves an external generalization accuracy of 89%. This approach paves the way for the development of a low-cost and accessible deep learning-based clinical system for lung cancer screening." @default.
- W4385201774 created "2023-07-25" @default.
- W4385201774 creator A5000128804 @default.
- W4385201774 creator A5002818315 @default.
- W4385201774 creator A5016221020 @default.
- W4385201774 creator A5027610555 @default.
- W4385201774 creator A5033894707 @default.
- W4385201774 creator A5059040421 @default.
- W4385201774 creator A5074179735 @default.
- W4385201774 creator A5091879252 @default.
- W4385201774 date "2023-07-21" @default.
- W4385201774 modified "2023-09-30" @default.
- W4385201774 title "Development of Debiasing Technique for Lung Nodule Chest X-ray Datasets to Generalize Deep Learning Models" @default.
- W4385201774 cites W1901129140 @default.
- W4385201774 cites W1904878066 @default.
- W4385201774 cites W1986649315 @default.
- W4385201774 cites W2004576213 @default.
- W4385201774 cites W2014413326 @default.
- W4385201774 cites W2031827337 @default.
- W4385201774 cites W2055225427 @default.
- W4385201774 cites W2061757011 @default.
- W4385201774 cites W2063598448 @default.
- W4385201774 cites W2063878321 @default.
- W4385201774 cites W2108598243 @default.
- W4385201774 cites W2115597079 @default.
- W4385201774 cites W2132014319 @default.
- W4385201774 cites W2137865578 @default.
- W4385201774 cites W2142514727 @default.
- W4385201774 cites W2146911148 @default.
- W4385201774 cites W2150220236 @default.
- W4385201774 cites W2285994294 @default.
- W4385201774 cites W2322096275 @default.
- W4385201774 cites W2344236848 @default.
- W4385201774 cites W2489600561 @default.
- W4385201774 cites W2584017349 @default.
- W4385201774 cites W2587787457 @default.
- W4385201774 cites W2752625590 @default.
- W4385201774 cites W2761814415 @default.
- W4385201774 cites W2774320778 @default.
- W4385201774 cites W2806041601 @default.
- W4385201774 cites W2811374795 @default.
- W4385201774 cites W2885112059 @default.
- W4385201774 cites W2889646458 @default.
- W4385201774 cites W2913081511 @default.
- W4385201774 cites W2923988346 @default.
- W4385201774 cites W2923997689 @default.
- W4385201774 cites W2945689170 @default.
- W4385201774 cites W2946185430 @default.
- W4385201774 cites W2946236639 @default.
- W4385201774 cites W2952855260 @default.
- W4385201774 cites W2962838801 @default.
- W4385201774 cites W2963394878 @default.
- W4385201774 cites W2963446712 @default.
- W4385201774 cites W2963521553 @default.
- W4385201774 cites W2979001271 @default.
- W4385201774 cites W2983538788 @default.
- W4385201774 cites W3033633770 @default.
- W4385201774 cites W3034409116 @default.
- W4385201774 cites W3040676006 @default.
- W4385201774 cites W3049131298 @default.
- W4385201774 cites W3051229043 @default.
- W4385201774 cites W3092743670 @default.
- W4385201774 cites W3099826992 @default.
- W4385201774 cites W3101156210 @default.
- W4385201774 cites W3101520758 @default.
- W4385201774 cites W3103194435 @default.
- W4385201774 cites W3109762849 @default.
- W4385201774 cites W3110181119 @default.
- W4385201774 cites W3110245785 @default.
- W4385201774 cites W3122459568 @default.
- W4385201774 cites W3129733985 @default.
- W4385201774 cites W3136933888 @default.
- W4385201774 cites W3171280285 @default.
- W4385201774 cites W3171849353 @default.
- W4385201774 cites W3200969281 @default.
- W4385201774 cites W3209181060 @default.
- W4385201774 cites W4302760599 @default.
- W4385201774 doi "https://doi.org/10.3390/s23146585" @default.
- W4385201774 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37514877" @default.
- W4385201774 hasPublicationYear "2023" @default.
- W4385201774 type Work @default.
- W4385201774 citedByCount "0" @default.
- W4385201774 crossrefType "journal-article" @default.
- W4385201774 hasAuthorship W4385201774A5000128804 @default.
- W4385201774 hasAuthorship W4385201774A5002818315 @default.
- W4385201774 hasAuthorship W4385201774A5016221020 @default.
- W4385201774 hasAuthorship W4385201774A5027610555 @default.
- W4385201774 hasAuthorship W4385201774A5033894707 @default.
- W4385201774 hasAuthorship W4385201774A5059040421 @default.
- W4385201774 hasAuthorship W4385201774A5074179735 @default.
- W4385201774 hasAuthorship W4385201774A5091879252 @default.
- W4385201774 hasBestOaLocation W43852017741 @default.
- W4385201774 hasConcept C108583219 @default.
- W4385201774 hasConcept C119857082 @default.
- W4385201774 hasConcept C126838900 @default.
- W4385201774 hasConcept C134306372 @default.
- W4385201774 hasConcept C154945302 @default.
- W4385201774 hasConcept C177148314 @default.