Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385201935> ?p ?o ?g. }
- W4385201935 endingPage "3198" @default.
- W4385201935 startingPage "3198" @default.
- W4385201935 abstract "One of the significant features of extreme learning machines (ELMs) is their fast convergence. However, in the big data environment, the ELM based on the Moore–Penrose matrix inverse still suffers from excessive calculation loads. Leveraging the decomposability of the alternating direction method of multipliers (ADMM), a convex model-fitting problem can be split into a set of sub-problems which can be executed in parallel. Using a maximally splitting technique and a relaxation technique, the sub-problems can be split into multiple univariate sub-problems. On this basis, we propose an adaptive parameter selection method that automatically tunes the key algorithm parameters during training. To confirm the effectiveness of this algorithm, experiments are conducted on eight classification datasets. We have verified the effectiveness of this algorithm in terms of the number of iterations, computation time, and acceleration ratios. The results show that the method proposed by this paper can greatly improve the speed of data processing while increasing the parallelism." @default.
- W4385201935 created "2023-07-25" @default.
- W4385201935 creator A5000199694 @default.
- W4385201935 creator A5038784686 @default.
- W4385201935 creator A5057300969 @default.
- W4385201935 creator A5082693020 @default.
- W4385201935 creator A5087313378 @default.
- W4385201935 date "2023-07-21" @default.
- W4385201935 modified "2023-09-28" @default.
- W4385201935 title "A Maximally Split and Adaptive Relaxed Alternating Direction Method of Multipliers for Regularized Extreme Learning Machines" @default.
- W4385201935 cites W1246301972 @default.
- W4385201935 cites W1982122564 @default.
- W4385201935 cites W1992841740 @default.
- W4385201935 cites W2049797988 @default.
- W4385201935 cites W2111072639 @default.
- W4385201935 cites W2154852616 @default.
- W4385201935 cites W2418562807 @default.
- W4385201935 cites W2588594937 @default.
- W4385201935 cites W2608190038 @default.
- W4385201935 cites W2622612680 @default.
- W4385201935 cites W2749412917 @default.
- W4385201935 cites W2755722473 @default.
- W4385201935 cites W2913527667 @default.
- W4385201935 cites W2913664433 @default.
- W4385201935 cites W2964266105 @default.
- W4385201935 cites W2964853047 @default.
- W4385201935 cites W2970581299 @default.
- W4385201935 cites W2997882088 @default.
- W4385201935 cites W3016230677 @default.
- W4385201935 cites W3033659627 @default.
- W4385201935 cites W3036707275 @default.
- W4385201935 cites W3041825527 @default.
- W4385201935 cites W3088663107 @default.
- W4385201935 cites W3092439306 @default.
- W4385201935 cites W3093094851 @default.
- W4385201935 cites W3093696180 @default.
- W4385201935 cites W3094198579 @default.
- W4385201935 cites W3099187963 @default.
- W4385201935 cites W3127136885 @default.
- W4385201935 cites W3144846391 @default.
- W4385201935 cites W3153428430 @default.
- W4385201935 cites W4226315341 @default.
- W4385201935 cites W4243251406 @default.
- W4385201935 cites W4380484875 @default.
- W4385201935 cites W912456583 @default.
- W4385201935 doi "https://doi.org/10.3390/math11143198" @default.
- W4385201935 hasPublicationYear "2023" @default.
- W4385201935 type Work @default.
- W4385201935 citedByCount "0" @default.
- W4385201935 crossrefType "journal-article" @default.
- W4385201935 hasAuthorship W4385201935A5000199694 @default.
- W4385201935 hasAuthorship W4385201935A5038784686 @default.
- W4385201935 hasAuthorship W4385201935A5057300969 @default.
- W4385201935 hasAuthorship W4385201935A5082693020 @default.
- W4385201935 hasAuthorship W4385201935A5087313378 @default.
- W4385201935 hasBestOaLocation W43852019351 @default.
- W4385201935 hasConcept C106487976 @default.
- W4385201935 hasConcept C112680207 @default.
- W4385201935 hasConcept C11413529 @default.
- W4385201935 hasConcept C114614502 @default.
- W4385201935 hasConcept C117896860 @default.
- W4385201935 hasConcept C119857082 @default.
- W4385201935 hasConcept C121332964 @default.
- W4385201935 hasConcept C12426560 @default.
- W4385201935 hasConcept C145446738 @default.
- W4385201935 hasConcept C154945302 @default.
- W4385201935 hasConcept C15744967 @default.
- W4385201935 hasConcept C159985019 @default.
- W4385201935 hasConcept C161584116 @default.
- W4385201935 hasConcept C162324750 @default.
- W4385201935 hasConcept C177264268 @default.
- W4385201935 hasConcept C192562407 @default.
- W4385201935 hasConcept C199163554 @default.
- W4385201935 hasConcept C199360897 @default.
- W4385201935 hasConcept C2524010 @default.
- W4385201935 hasConcept C26517878 @default.
- W4385201935 hasConcept C2776029896 @default.
- W4385201935 hasConcept C2777303404 @default.
- W4385201935 hasConcept C2780150128 @default.
- W4385201935 hasConcept C33923547 @default.
- W4385201935 hasConcept C38652104 @default.
- W4385201935 hasConcept C39847760 @default.
- W4385201935 hasConcept C41008148 @default.
- W4385201935 hasConcept C45374587 @default.
- W4385201935 hasConcept C50522688 @default.
- W4385201935 hasConcept C50644808 @default.
- W4385201935 hasConcept C74650414 @default.
- W4385201935 hasConcept C77805123 @default.
- W4385201935 hasConceptScore W4385201935C106487976 @default.
- W4385201935 hasConceptScore W4385201935C112680207 @default.
- W4385201935 hasConceptScore W4385201935C11413529 @default.
- W4385201935 hasConceptScore W4385201935C114614502 @default.
- W4385201935 hasConceptScore W4385201935C117896860 @default.
- W4385201935 hasConceptScore W4385201935C119857082 @default.
- W4385201935 hasConceptScore W4385201935C121332964 @default.
- W4385201935 hasConceptScore W4385201935C12426560 @default.
- W4385201935 hasConceptScore W4385201935C145446738 @default.
- W4385201935 hasConceptScore W4385201935C154945302 @default.