Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385202017> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4385202017 endingPage "633" @default.
- W4385202017 startingPage "623" @default.
- W4385202017 abstract "A country’s GDP is affected by the price fluctuations of agricultural products. In particular, India’s economy is largely dependent on agriculture, with farmers being the backbone of the economy. Predicting the price of grain and drawing conclusions to recommend crops help farmers and those in the agriculture industry make better decisions, which will help in minimizing losses, maximizing production, and reducing the risk of price fluctuations. Trends in prices can help farmers make an intelligent decision before farming a specific type of crop or grain. In our paper, we attempt to construct a reliable predictor of grain prices using data mining and machine learning algorithms. The classifier models used in this study are KNN, random forest, decision tree classifier, and gradient boosting of which gradient boosting provides maximum accuracy." @default.
- W4385202017 created "2023-07-25" @default.
- W4385202017 creator A5016365539 @default.
- W4385202017 creator A5057059795 @default.
- W4385202017 creator A5082448960 @default.
- W4385202017 creator A5082635167 @default.
- W4385202017 creator A5083131032 @default.
- W4385202017 date "2023-01-01" @default.
- W4385202017 modified "2023-10-16" @default.
- W4385202017 title "Prediction of Optimal Crop to Grow Based on Geographical Information" @default.
- W4385202017 cites W1500435738 @default.
- W4385202017 cites W1511445453 @default.
- W4385202017 cites W1678356000 @default.
- W4385202017 cites W1976193075 @default.
- W4385202017 cites W2025697231 @default.
- W4385202017 cites W2157825442 @default.
- W4385202017 cites W2158698691 @default.
- W4385202017 cites W2161332487 @default.
- W4385202017 cites W2942076272 @default.
- W4385202017 cites W3006645913 @default.
- W4385202017 cites W3047584724 @default.
- W4385202017 cites W3092612392 @default.
- W4385202017 cites W3109031550 @default.
- W4385202017 cites W3115277329 @default.
- W4385202017 cites W3126232929 @default.
- W4385202017 cites W3162672535 @default.
- W4385202017 cites W3166300648 @default.
- W4385202017 cites W3205378599 @default.
- W4385202017 cites W4252219488 @default.
- W4385202017 cites W4253348799 @default.
- W4385202017 doi "https://doi.org/10.1007/978-981-99-3878-0_53" @default.
- W4385202017 hasPublicationYear "2023" @default.
- W4385202017 type Work @default.
- W4385202017 citedByCount "0" @default.
- W4385202017 crossrefType "book-chapter" @default.
- W4385202017 hasAuthorship W4385202017A5016365539 @default.
- W4385202017 hasAuthorship W4385202017A5057059795 @default.
- W4385202017 hasAuthorship W4385202017A5082448960 @default.
- W4385202017 hasAuthorship W4385202017A5082635167 @default.
- W4385202017 hasAuthorship W4385202017A5083131032 @default.
- W4385202017 hasConcept C118518473 @default.
- W4385202017 hasConcept C119857082 @default.
- W4385202017 hasConcept C127413603 @default.
- W4385202017 hasConcept C149782125 @default.
- W4385202017 hasConcept C154945302 @default.
- W4385202017 hasConcept C162324750 @default.
- W4385202017 hasConcept C166957645 @default.
- W4385202017 hasConcept C169258074 @default.
- W4385202017 hasConcept C205649164 @default.
- W4385202017 hasConcept C2992537987 @default.
- W4385202017 hasConcept C41008148 @default.
- W4385202017 hasConcept C46686674 @default.
- W4385202017 hasConcept C48824518 @default.
- W4385202017 hasConcept C70153297 @default.
- W4385202017 hasConcept C84525736 @default.
- W4385202017 hasConcept C88463610 @default.
- W4385202017 hasConcept C95623464 @default.
- W4385202017 hasConceptScore W4385202017C118518473 @default.
- W4385202017 hasConceptScore W4385202017C119857082 @default.
- W4385202017 hasConceptScore W4385202017C127413603 @default.
- W4385202017 hasConceptScore W4385202017C149782125 @default.
- W4385202017 hasConceptScore W4385202017C154945302 @default.
- W4385202017 hasConceptScore W4385202017C162324750 @default.
- W4385202017 hasConceptScore W4385202017C166957645 @default.
- W4385202017 hasConceptScore W4385202017C169258074 @default.
- W4385202017 hasConceptScore W4385202017C205649164 @default.
- W4385202017 hasConceptScore W4385202017C2992537987 @default.
- W4385202017 hasConceptScore W4385202017C41008148 @default.
- W4385202017 hasConceptScore W4385202017C46686674 @default.
- W4385202017 hasConceptScore W4385202017C48824518 @default.
- W4385202017 hasConceptScore W4385202017C70153297 @default.
- W4385202017 hasConceptScore W4385202017C84525736 @default.
- W4385202017 hasConceptScore W4385202017C88463610 @default.
- W4385202017 hasConceptScore W4385202017C95623464 @default.
- W4385202017 hasLocation W43852020171 @default.
- W4385202017 hasOpenAccess W4385202017 @default.
- W4385202017 hasPrimaryLocation W43852020171 @default.
- W4385202017 hasRelatedWork W3100297620 @default.
- W4385202017 hasRelatedWork W3126325819 @default.
- W4385202017 hasRelatedWork W3201348321 @default.
- W4385202017 hasRelatedWork W4212956667 @default.
- W4385202017 hasRelatedWork W4281866327 @default.
- W4385202017 hasRelatedWork W4293087678 @default.
- W4385202017 hasRelatedWork W4296081764 @default.
- W4385202017 hasRelatedWork W4308191010 @default.
- W4385202017 hasRelatedWork W4382701299 @default.
- W4385202017 hasRelatedWork W4385728794 @default.
- W4385202017 isParatext "false" @default.
- W4385202017 isRetracted "false" @default.
- W4385202017 workType "book-chapter" @default.