Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385202354> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4385202354 endingPage "3163" @default.
- W4385202354 startingPage "3163" @default.
- W4385202354 abstract "Synthetic Aperture Radar (SAR) is an active microwave sensor with all-day/night and all-weather detection capability, which is crucial for detecting surface water resources. Surface water-body such as rivers, lakes, reservoirs, and ponds usually appear as dark areas in SAR images. Accurate and automated extraction of these water bodies can provide valuable data for the management and strategic planning of surface water resources and effectively help prevent and control drought and flood disasters. However, most deep learning-based methods rely on manually labeled samples for model training and testing, which is inefficient and may introduce errors. To address this problem, this paper proposes a novel water-body detection method that combines optimization algorithms and deep learning techniques to automate water-body label extraction and improve the accuracy of water-body detection. First, this paper uses a swarm intelligence optimization algorithm, Dung Beetle Optimizer (DBO), to optimize the initial cluster center of the K-means clustering algorithm, which is called the DBO-K-means (DK) method. The DK method divides the training images into four categories and extracts the water bodies in them to generate the water-body labels required for deep learning model training and testing, and the whole process does not require human intervention. Then, the labels generated by DK and training data set images are fed into the Classifier–Optimizer (CO) for training. The classifier performs a dense classification task at the pixel level, resulting in an initial result image with blurred boundaries of the water body. Then, the optimizer takes this preliminary result image and the original SAR image as input, performs fine-grained optimization on the preliminary result, and finally generates a result image with a clear water-body boundary. Finally, we evaluated the accuracy of water-body detection using multiple performance indicators including ACC, precision, F1-Score, recall, and Kappa coefficient. The results show that the values of all indicators exceed 93%, which demonstrates the high accuracy and reliability of our proposed water-body detection method. Overall, this paper presents a novel DK-based approach that improves the automation and accuracy of deep learning methods for detecting water bodies in SAR images by enabling automatic sample extraction and optimization of deep learning models." @default.
- W4385202354 created "2023-07-25" @default.
- W4385202354 creator A5006633399 @default.
- W4385202354 creator A5008856989 @default.
- W4385202354 creator A5023363049 @default.
- W4385202354 creator A5045136980 @default.
- W4385202354 creator A5089334983 @default.
- W4385202354 date "2023-07-21" @default.
- W4385202354 modified "2023-09-30" @default.
- W4385202354 title "Water-Body Detection in Sentinel-1 SAR Images with DK-CO Network" @default.
- W4385202354 cites W1903029394 @default.
- W4385202354 cites W2107290856 @default.
- W4385202354 cites W2142026865 @default.
- W4385202354 cites W2221448138 @default.
- W4385202354 cites W2412782625 @default.
- W4385202354 cites W2601965012 @default.
- W4385202354 cites W2774320778 @default.
- W4385202354 cites W2785530160 @default.
- W4385202354 cites W2901509629 @default.
- W4385202354 cites W2961348656 @default.
- W4385202354 cites W2963881378 @default.
- W4385202354 cites W2967395252 @default.
- W4385202354 cites W2970277117 @default.
- W4385202354 cites W2998391859 @default.
- W4385202354 cites W3011225259 @default.
- W4385202354 cites W3013510902 @default.
- W4385202354 cites W3032837604 @default.
- W4385202354 cites W3034627479 @default.
- W4385202354 cites W3036035228 @default.
- W4385202354 cites W3040593397 @default.
- W4385202354 cites W3046165398 @default.
- W4385202354 cites W3117374221 @default.
- W4385202354 cites W3173929345 @default.
- W4385202354 cites W3184840388 @default.
- W4385202354 cites W4200575156 @default.
- W4385202354 cites W4220861654 @default.
- W4385202354 cites W4224228329 @default.
- W4385202354 cites W4287148521 @default.
- W4385202354 cites W4310551501 @default.
- W4385202354 cites W4315777148 @default.
- W4385202354 cites W4323543671 @default.
- W4385202354 doi "https://doi.org/10.3390/electronics12143163" @default.
- W4385202354 hasPublicationYear "2023" @default.
- W4385202354 type Work @default.
- W4385202354 citedByCount "0" @default.
- W4385202354 crossrefType "journal-article" @default.
- W4385202354 hasAuthorship W4385202354A5006633399 @default.
- W4385202354 hasAuthorship W4385202354A5008856989 @default.
- W4385202354 hasAuthorship W4385202354A5023363049 @default.
- W4385202354 hasAuthorship W4385202354A5045136980 @default.
- W4385202354 hasAuthorship W4385202354A5089334983 @default.
- W4385202354 hasBestOaLocation W43852023541 @default.
- W4385202354 hasConcept C108583219 @default.
- W4385202354 hasConcept C119857082 @default.
- W4385202354 hasConcept C153180895 @default.
- W4385202354 hasConcept C153823671 @default.
- W4385202354 hasConcept C154945302 @default.
- W4385202354 hasConcept C18903297 @default.
- W4385202354 hasConcept C41008148 @default.
- W4385202354 hasConcept C50644808 @default.
- W4385202354 hasConcept C73555534 @default.
- W4385202354 hasConcept C86803240 @default.
- W4385202354 hasConcept C87360688 @default.
- W4385202354 hasConcept C95623464 @default.
- W4385202354 hasConceptScore W4385202354C108583219 @default.
- W4385202354 hasConceptScore W4385202354C119857082 @default.
- W4385202354 hasConceptScore W4385202354C153180895 @default.
- W4385202354 hasConceptScore W4385202354C153823671 @default.
- W4385202354 hasConceptScore W4385202354C154945302 @default.
- W4385202354 hasConceptScore W4385202354C18903297 @default.
- W4385202354 hasConceptScore W4385202354C41008148 @default.
- W4385202354 hasConceptScore W4385202354C50644808 @default.
- W4385202354 hasConceptScore W4385202354C73555534 @default.
- W4385202354 hasConceptScore W4385202354C86803240 @default.
- W4385202354 hasConceptScore W4385202354C87360688 @default.
- W4385202354 hasConceptScore W4385202354C95623464 @default.
- W4385202354 hasFunder F4320321001 @default.
- W4385202354 hasIssue "14" @default.
- W4385202354 hasLocation W43852023541 @default.
- W4385202354 hasOpenAccess W4385202354 @default.
- W4385202354 hasPrimaryLocation W43852023541 @default.
- W4385202354 hasRelatedWork W3158264953 @default.
- W4385202354 hasRelatedWork W4223943233 @default.
- W4385202354 hasRelatedWork W4225161397 @default.
- W4385202354 hasRelatedWork W4309045103 @default.
- W4385202354 hasRelatedWork W4312200629 @default.
- W4385202354 hasRelatedWork W4360585206 @default.
- W4385202354 hasRelatedWork W4364306694 @default.
- W4385202354 hasRelatedWork W4380075502 @default.
- W4385202354 hasRelatedWork W4380086463 @default.
- W4385202354 hasRelatedWork W564581980 @default.
- W4385202354 hasVolume "12" @default.
- W4385202354 isParatext "false" @default.
- W4385202354 isRetracted "false" @default.
- W4385202354 workType "article" @default.