Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385202372> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W4385202372 abstract "Although IoT sectors seem more popular and pervasively, they struggle with hazards. The botnet is one of the largest security dangers associated with IoT. It enables malicious software to administer and attack private network equipment collectively without the owners’ knowledge. Although many studies have used ML to detect botnets, these are either not very effective or only work with specific types of botnets or devices. As a result, the detection model for deep learning ideas is the focus of this research. It entails three key processes: (a) preprocessing, (b) feature extraction, and (c) classification. The input data are initially preprocessed using an improved data normalization approach. The preprocessed data are used to extract a number of features, including Tanimoto coefficient features, improved differential holoentropy-based features, Pearson r correlation-based features, and others. The detection process will be completed by an ensemble classification model that randomly shuffles models like the Deep Belief Network (DBN) model, Bidirectional Gated Recurrent Unit (Bi-GRU), and Long Short-Term Memory (LSTM). Bi-GRU, DBN, and LSTM will be averaged to provide the ensemble results. Bi-GRU is trained using the Self Improved Blue Monkey Optimization (SIBMO) Algorithm by selecting the optimal weights, which increases the detection accuracy. The overall performance of the suggested work is then evaluated in relation to other existing models using various methodologies. In comparison to existing methods, the created ensemble classifier [Formula: see text] SIBMO scheme obtains the highest accuracy (93%) at a learning percentage of 90%." @default.
- W4385202372 created "2023-07-25" @default.
- W4385202372 creator A5018977680 @default.
- W4385202372 date "2023-07-22" @default.
- W4385202372 modified "2023-09-28" @default.
- W4385202372 title "Combined Tri-Classifiers for IoT Botnet Detection with Tuned Training Weights" @default.
- W4385202372 doi "https://doi.org/10.1142/s021946782550007x" @default.
- W4385202372 hasPublicationYear "2023" @default.
- W4385202372 type Work @default.
- W4385202372 citedByCount "0" @default.
- W4385202372 crossrefType "journal-article" @default.
- W4385202372 hasAuthorship W4385202372A5018977680 @default.
- W4385202372 hasConcept C108583219 @default.
- W4385202372 hasConcept C110875604 @default.
- W4385202372 hasConcept C119857082 @default.
- W4385202372 hasConcept C12267149 @default.
- W4385202372 hasConcept C124101348 @default.
- W4385202372 hasConcept C136764020 @default.
- W4385202372 hasConcept C136886441 @default.
- W4385202372 hasConcept C144024400 @default.
- W4385202372 hasConcept C153180895 @default.
- W4385202372 hasConcept C154945302 @default.
- W4385202372 hasConcept C164085508 @default.
- W4385202372 hasConcept C19165224 @default.
- W4385202372 hasConcept C22735295 @default.
- W4385202372 hasConcept C41008148 @default.
- W4385202372 hasConcept C95623464 @default.
- W4385202372 hasConcept C97385483 @default.
- W4385202372 hasConceptScore W4385202372C108583219 @default.
- W4385202372 hasConceptScore W4385202372C110875604 @default.
- W4385202372 hasConceptScore W4385202372C119857082 @default.
- W4385202372 hasConceptScore W4385202372C12267149 @default.
- W4385202372 hasConceptScore W4385202372C124101348 @default.
- W4385202372 hasConceptScore W4385202372C136764020 @default.
- W4385202372 hasConceptScore W4385202372C136886441 @default.
- W4385202372 hasConceptScore W4385202372C144024400 @default.
- W4385202372 hasConceptScore W4385202372C153180895 @default.
- W4385202372 hasConceptScore W4385202372C154945302 @default.
- W4385202372 hasConceptScore W4385202372C164085508 @default.
- W4385202372 hasConceptScore W4385202372C19165224 @default.
- W4385202372 hasConceptScore W4385202372C22735295 @default.
- W4385202372 hasConceptScore W4385202372C41008148 @default.
- W4385202372 hasConceptScore W4385202372C95623464 @default.
- W4385202372 hasConceptScore W4385202372C97385483 @default.
- W4385202372 hasLocation W43852023721 @default.
- W4385202372 hasOpenAccess W4385202372 @default.
- W4385202372 hasPrimaryLocation W43852023721 @default.
- W4385202372 hasRelatedWork W2567271240 @default.
- W4385202372 hasRelatedWork W2741836081 @default.
- W4385202372 hasRelatedWork W2766146978 @default.
- W4385202372 hasRelatedWork W2919358988 @default.
- W4385202372 hasRelatedWork W2942650110 @default.
- W4385202372 hasRelatedWork W2955124940 @default.
- W4385202372 hasRelatedWork W2991591812 @default.
- W4385202372 hasRelatedWork W3123344745 @default.
- W4385202372 hasRelatedWork W3196183652 @default.
- W4385202372 hasRelatedWork W4316087074 @default.
- W4385202372 isParatext "false" @default.
- W4385202372 isRetracted "false" @default.
- W4385202372 workType "article" @default.