Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385202485> ?p ?o ?g. }
- W4385202485 endingPage "105584" @default.
- W4385202485 startingPage "105584" @default.
- W4385202485 abstract "Limu deposit is one of the representative deposits with coexisting Ta-Nb and Sn-W mineralization in the Nanling Range, South China. It consists of three stages of granites, with the Ta-Nb and Sn-W mineralization mainly restricting in the third-stage granite. However, the details of the polymetallic mineralization process in this deposit are still obscure. This study utilizes mica geochemistry to trace the ore-related magmatic and hydrothermal processes. The primary micas evolved from Li-phengite in the first- and second-stage granites to zinnwaldite-lepidolite in the third-stage granite. The micas are increasingly enriched in Li, F, Rb and Cs elements with decreasing K/Rb and K/Cs ratios, suggesting a dominant fractional crystallization of feldspars, particularly plagioclase, with minor mica fractionation during magma evolution. The Li-phengites from the first- to the second-stage granites increase in Ta (average value: 38 to 61 ppm) and Nb concentrations (average value: 160 to 180 ppm) but decrease in Nb/Ta ratios (average value: 4.4 to 3.5), consistent with the bulk-rock Ta-Nb enrichment trends. However, the zinnwaldite in the third-stage granite has significantly lower Nb (110 ppm in average) but higher Ta concentration (170 ppm in average), and evolves to lepidolite toward decreasing Nb and Ta concentration (51 and 63 ppm in average, respectively) and increasing Nb/Ta ratios (average value: 0.7 to 1.0). These chemical features of the micas are controlled by co-crystallization of columbite group minerals (CGM) during the evolution of third-stage granitic magma, which was likely Nb-rich at the early stage and evolved toward Ta enrichment. Thus, magmatic processes played a critical role in the Ta-Nb mineralization. Secondary hydrothermal micas in the third-stage granite distinctly depleted in Li, F, Rb and Cs recrystallized from the primary zinnwaldite-lepidolite via replacing reaction, which are closely associated with cassiterite, wolframite and pyrite in the granite. The consistent δ34S values of the disseminated pyrite (0.71‰) and vein-type pyrite (1.12‰) in the granite indicate that the hydrothermal system was dominated by magmatic fluids without notable involvement of external fluids. The lower Ta and Nb concentrations (31 and 35 ppm in average, respectively) of the hydrothermal micas compared to primary ones suggest that at least small amounts of Ta and Nb were transferred by the fluids. Indicated by the mica concentrations, Sn and W were enriched with magma evolution and likely concentrated in the volatile and flux components of the third-stage magma. Furthermore, cassiterite and wolframite in the granite precipitated by fluid-rock interaction, and a portion of W and Sn migrated away with exsolved fluids to form the quartz vein W-Sn mineralization. This study demonstrates that mica geochemistry can effectively indicate magmatic-hydrothermal processes in granite-related Ta-Nb and Sn-W mineralization." @default.
- W4385202485 created "2023-07-25" @default.
- W4385202485 creator A5011560454 @default.
- W4385202485 creator A5052002691 @default.
- W4385202485 creator A5069687620 @default.
- W4385202485 creator A5073313920 @default.
- W4385202485 creator A5081191477 @default.
- W4385202485 creator A5091584541 @default.
- W4385202485 date "2023-09-01" @default.
- W4385202485 modified "2023-10-14" @default.
- W4385202485 title "Mica geochemistry as an indicator of magmatic-hydrothermal processes in the Ta-Nb-Sn-W mineralization of the Limu deposit, South China" @default.
- W4385202485 cites W1525258218 @default.
- W4385202485 cites W1937752422 @default.
- W4385202485 cites W1967321929 @default.
- W4385202485 cites W1968583876 @default.
- W4385202485 cites W1973607908 @default.
- W4385202485 cites W1975284296 @default.
- W4385202485 cites W1980255347 @default.
- W4385202485 cites W1986202484 @default.
- W4385202485 cites W1995066725 @default.
- W4385202485 cites W1996988302 @default.
- W4385202485 cites W2000769549 @default.
- W4385202485 cites W2003954276 @default.
- W4385202485 cites W2014814092 @default.
- W4385202485 cites W2019143131 @default.
- W4385202485 cites W2038653717 @default.
- W4385202485 cites W2044358950 @default.
- W4385202485 cites W2060003735 @default.
- W4385202485 cites W2065940550 @default.
- W4385202485 cites W2069309542 @default.
- W4385202485 cites W2086213893 @default.
- W4385202485 cites W2092829775 @default.
- W4385202485 cites W2093740880 @default.
- W4385202485 cites W2100123355 @default.
- W4385202485 cites W2103578787 @default.
- W4385202485 cites W2127823939 @default.
- W4385202485 cites W2132595765 @default.
- W4385202485 cites W2134849096 @default.
- W4385202485 cites W2138522501 @default.
- W4385202485 cites W2148957284 @default.
- W4385202485 cites W2162891705 @default.
- W4385202485 cites W2163648264 @default.
- W4385202485 cites W2226614280 @default.
- W4385202485 cites W2259594780 @default.
- W4385202485 cites W2322760955 @default.
- W4385202485 cites W2323447085 @default.
- W4385202485 cites W2333220402 @default.
- W4385202485 cites W2335657501 @default.
- W4385202485 cites W2338521564 @default.
- W4385202485 cites W2403988321 @default.
- W4385202485 cites W2588592635 @default.
- W4385202485 cites W2604627634 @default.
- W4385202485 cites W2742088150 @default.
- W4385202485 cites W2781715147 @default.
- W4385202485 cites W2792346265 @default.
- W4385202485 cites W2804488353 @default.
- W4385202485 cites W2888088319 @default.
- W4385202485 cites W2901350196 @default.
- W4385202485 cites W2914855707 @default.
- W4385202485 cites W2918061084 @default.
- W4385202485 cites W2954726349 @default.
- W4385202485 cites W2966635181 @default.
- W4385202485 cites W2995582055 @default.
- W4385202485 cites W2998206313 @default.
- W4385202485 cites W3018098777 @default.
- W4385202485 cites W3038092406 @default.
- W4385202485 cites W3081997359 @default.
- W4385202485 cites W3082831327 @default.
- W4385202485 cites W3110909999 @default.
- W4385202485 cites W3111274288 @default.
- W4385202485 cites W3129315965 @default.
- W4385202485 cites W3134118706 @default.
- W4385202485 cites W4205876156 @default.
- W4385202485 cites W4232858596 @default.
- W4385202485 cites W4245287945 @default.
- W4385202485 doi "https://doi.org/10.1016/j.oregeorev.2023.105584" @default.
- W4385202485 hasPublicationYear "2023" @default.
- W4385202485 type Work @default.
- W4385202485 citedByCount "0" @default.
- W4385202485 crossrefType "journal-article" @default.
- W4385202485 hasAuthorship W4385202485A5011560454 @default.
- W4385202485 hasAuthorship W4385202485A5052002691 @default.
- W4385202485 hasAuthorship W4385202485A5069687620 @default.
- W4385202485 hasAuthorship W4385202485A5073313920 @default.
- W4385202485 hasAuthorship W4385202485A5081191477 @default.
- W4385202485 hasAuthorship W4385202485A5091584541 @default.
- W4385202485 hasBestOaLocation W43852024851 @default.
- W4385202485 hasConcept C111696902 @default.
- W4385202485 hasConcept C11872896 @default.
- W4385202485 hasConcept C127313418 @default.
- W4385202485 hasConcept C151730666 @default.
- W4385202485 hasConcept C156622251 @default.
- W4385202485 hasConcept C159390177 @default.
- W4385202485 hasConcept C159750122 @default.
- W4385202485 hasConcept C165205528 @default.
- W4385202485 hasConcept C17409809 @default.
- W4385202485 hasConcept C199289684 @default.
- W4385202485 hasConcept C2779181077 @default.