Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385212518> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W4385212518 endingPage "9" @default.
- W4385212518 startingPage "1" @default.
- W4385212518 abstract "Faster-than-Nyquist (FTN) signaling is a useful communication technique for high spectral efficiency. However, since orthogonality between symbols is destroyed when a symbol rate faster than the Nyquist rate is used, intersymbol interference (ISI) is inevitably generated. Interference cancellation and signal detection processes are required to reduce the effect of ISI on the FTN receiver. Furthermore, FTN signaling in the multipath fading channel is a complicated problem because nonlinear interference from FTN signaling is combined with the additional nonlinear interference from the multipath fading channel. This paper proposes a deep learning-based signal detection technique for the FTN signal received through a multipath fading channel. The proposed technology considers the normal FTN signaling-based transmitter without additional signal processing schemes such as precoding and power allocation. We designed a recurrent neural network (RNN)-based deep learning structure and applied it to the FTN signaling-based system. For the RNN structure, both unidirectional long short-term memory (Uni-LSTM) and bidirectional LSTM (Bi-LSTM) architectures were considered. Simulation results showed that both Uni-LSTM and Bi-LSTM performed better than the conventional BCJR algorithm when the FTN factor <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$tau$</tex-math> </inline-formula> <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$=$</tex-math> </inline-formula> 0.8 and 0.7. Furthermore, the Bi-LSTM architecture achieved the best performances in all simulations. The proposed LSTM-based FTN detector can detect transmitted symbols without estimating channel coefficients and SNR." @default.
- W4385212518 created "2023-07-25" @default.
- W4385212518 creator A5009022339 @default.
- W4385212518 creator A5017172069 @default.
- W4385212518 creator A5018092152 @default.
- W4385212518 creator A5054690838 @default.
- W4385212518 date "2023-01-01" @default.
- W4385212518 modified "2023-09-27" @default.
- W4385212518 title "FTN-Based Non-Orthogonal Signal Detection Technique With Machine Learning in Quasi-Static Multipath Channel" @default.
- W4385212518 doi "https://doi.org/10.1109/tbc.2023.3291135" @default.
- W4385212518 hasPublicationYear "2023" @default.
- W4385212518 type Work @default.
- W4385212518 citedByCount "0" @default.
- W4385212518 crossrefType "journal-article" @default.
- W4385212518 hasAuthorship W4385212518A5009022339 @default.
- W4385212518 hasAuthorship W4385212518A5017172069 @default.
- W4385212518 hasAuthorship W4385212518A5018092152 @default.
- W4385212518 hasAuthorship W4385212518A5054690838 @default.
- W4385212518 hasConcept C11413529 @default.
- W4385212518 hasConcept C127162648 @default.
- W4385212518 hasConcept C127413603 @default.
- W4385212518 hasConcept C140779682 @default.
- W4385212518 hasConcept C161218011 @default.
- W4385212518 hasConcept C24326235 @default.
- W4385212518 hasConcept C28490314 @default.
- W4385212518 hasConcept C288623 @default.
- W4385212518 hasConcept C31972630 @default.
- W4385212518 hasConcept C32022120 @default.
- W4385212518 hasConcept C41008148 @default.
- W4385212518 hasConcept C47798520 @default.
- W4385212518 hasConcept C65914096 @default.
- W4385212518 hasConcept C76155785 @default.
- W4385212518 hasConcept C81978471 @default.
- W4385212518 hasConcept C83204339 @default.
- W4385212518 hasConcept C94915269 @default.
- W4385212518 hasConcept C97812054 @default.
- W4385212518 hasConceptScore W4385212518C11413529 @default.
- W4385212518 hasConceptScore W4385212518C127162648 @default.
- W4385212518 hasConceptScore W4385212518C127413603 @default.
- W4385212518 hasConceptScore W4385212518C140779682 @default.
- W4385212518 hasConceptScore W4385212518C161218011 @default.
- W4385212518 hasConceptScore W4385212518C24326235 @default.
- W4385212518 hasConceptScore W4385212518C28490314 @default.
- W4385212518 hasConceptScore W4385212518C288623 @default.
- W4385212518 hasConceptScore W4385212518C31972630 @default.
- W4385212518 hasConceptScore W4385212518C32022120 @default.
- W4385212518 hasConceptScore W4385212518C41008148 @default.
- W4385212518 hasConceptScore W4385212518C47798520 @default.
- W4385212518 hasConceptScore W4385212518C65914096 @default.
- W4385212518 hasConceptScore W4385212518C76155785 @default.
- W4385212518 hasConceptScore W4385212518C81978471 @default.
- W4385212518 hasConceptScore W4385212518C83204339 @default.
- W4385212518 hasConceptScore W4385212518C94915269 @default.
- W4385212518 hasConceptScore W4385212518C97812054 @default.
- W4385212518 hasLocation W43852125181 @default.
- W4385212518 hasOpenAccess W4385212518 @default.
- W4385212518 hasPrimaryLocation W43852125181 @default.
- W4385212518 hasRelatedWork W1520961156 @default.
- W4385212518 hasRelatedWork W2082218025 @default.
- W4385212518 hasRelatedWork W2143280560 @default.
- W4385212518 hasRelatedWork W2164210056 @default.
- W4385212518 hasRelatedWork W2165609646 @default.
- W4385212518 hasRelatedWork W2386920541 @default.
- W4385212518 hasRelatedWork W2508204700 @default.
- W4385212518 hasRelatedWork W2613563825 @default.
- W4385212518 hasRelatedWork W4239644143 @default.
- W4385212518 hasRelatedWork W620407778 @default.
- W4385212518 isParatext "false" @default.
- W4385212518 isRetracted "false" @default.
- W4385212518 workType "article" @default.