Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385212801> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4385212801 endingPage "639" @default.
- W4385212801 startingPage "627" @default.
- W4385212801 abstract "Digital technology has enhanced every sector of science and technology. There are many sectors, in which digital communication can be used as a primary key for performing operations. Digital communication can be used, in a positive way as well as in a negative way. Digital communication and arms and ammunition utilized in war, chemical industries, textile industries, etc. reduce the human effort required for communication. However, there are a lot of disadvantages of digital communication and arms and ammunition used in war and the chemical industry, viz. (i) destruction of soil and land, (ii) air, (iii) water, and the environment. This increases the carbon monoxide, carbon dioxide, reduces the oxygen level, and damages the ozone layer. This results in the generation of random storms through air, water, and soil, i.e., earthquakes. There is a need to resolve such an issue using conventional weather forecasting and modern techniques used for the prediction of weather using deep learning and AIML techniques. Conventional weather forecasting is far more straightforward to implement and has not been reliable enough for the prediction of an occurrence of a storm. The reason for this sheer complexity of predicting storms lies in the origin of storm forecasting, which begins with analyzing multiple geographical factors that occur in the sea waters near the coastline of continents. The oceanographic processes, which are equipped with complex dynamic mechanisms, are unpredictable due to the influence of many geographical parameters. In this research work, to predict the storm and its severity, a comparative study of random forest and SVM algorithm is being used. To evaluate this work, several parameters are used, viz. (i) crop loss, (ii) fatalities, (iii) property losses, etc. Based on these parameters, precision, recall, and accurate weather forecasting can be done using deep learning algorithms. The paper also explains the comparative study between the various machine learning algorithms considered for storm prediction." @default.
- W4385212801 created "2023-07-25" @default.
- W4385212801 creator A5002368222 @default.
- W4385212801 creator A5009455143 @default.
- W4385212801 creator A5021671297 @default.
- W4385212801 creator A5057620463 @default.
- W4385212801 creator A5061361302 @default.
- W4385212801 creator A5085435880 @default.
- W4385212801 creator A5092532815 @default.
- W4385212801 creator A5092532816 @default.
- W4385212801 date "2023-01-01" @default.
- W4385212801 modified "2023-10-14" @default.
- W4385212801 title "Comparison of Machine Learning Algorithms Based on Damage Caused by Storms" @default.
- W4385212801 cites W1583150582 @default.
- W4385212801 cites W1965944476 @default.
- W4385212801 cites W1967581660 @default.
- W4385212801 cites W1969366914 @default.
- W4385212801 cites W2008757278 @default.
- W4385212801 cites W2011804658 @default.
- W4385212801 cites W2019138583 @default.
- W4385212801 cites W2068957560 @default.
- W4385212801 cites W2124397295 @default.
- W4385212801 cites W2131862161 @default.
- W4385212801 cites W2173982229 @default.
- W4385212801 cites W2417545235 @default.
- W4385212801 cites W2510977644 @default.
- W4385212801 cites W2594349007 @default.
- W4385212801 cites W2616290533 @default.
- W4385212801 cites W2625239610 @default.
- W4385212801 cites W2736835436 @default.
- W4385212801 cites W2770818215 @default.
- W4385212801 cites W2804943168 @default.
- W4385212801 cites W2889706606 @default.
- W4385212801 cites W2908155528 @default.
- W4385212801 cites W2908758701 @default.
- W4385212801 cites W2946064216 @default.
- W4385212801 cites W2979405346 @default.
- W4385212801 cites W3152611657 @default.
- W4385212801 cites W4246027504 @default.
- W4385212801 cites W4282961571 @default.
- W4385212801 doi "https://doi.org/10.1007/978-981-99-3315-0_48" @default.
- W4385212801 hasPublicationYear "2023" @default.
- W4385212801 type Work @default.
- W4385212801 citedByCount "0" @default.
- W4385212801 crossrefType "book-chapter" @default.
- W4385212801 hasAuthorship W4385212801A5002368222 @default.
- W4385212801 hasAuthorship W4385212801A5009455143 @default.
- W4385212801 hasAuthorship W4385212801A5021671297 @default.
- W4385212801 hasAuthorship W4385212801A5057620463 @default.
- W4385212801 hasAuthorship W4385212801A5061361302 @default.
- W4385212801 hasAuthorship W4385212801A5085435880 @default.
- W4385212801 hasAuthorship W4385212801A5092532815 @default.
- W4385212801 hasAuthorship W4385212801A5092532816 @default.
- W4385212801 hasConcept C105306849 @default.
- W4385212801 hasConcept C119857082 @default.
- W4385212801 hasConcept C127413603 @default.
- W4385212801 hasConcept C153294291 @default.
- W4385212801 hasConcept C154945302 @default.
- W4385212801 hasConcept C17744445 @default.
- W4385212801 hasConcept C199539241 @default.
- W4385212801 hasConcept C205649164 @default.
- W4385212801 hasConcept C2777381055 @default.
- W4385212801 hasConcept C2987469573 @default.
- W4385212801 hasConcept C39432304 @default.
- W4385212801 hasConcept C41008148 @default.
- W4385212801 hasConceptScore W4385212801C105306849 @default.
- W4385212801 hasConceptScore W4385212801C119857082 @default.
- W4385212801 hasConceptScore W4385212801C127413603 @default.
- W4385212801 hasConceptScore W4385212801C153294291 @default.
- W4385212801 hasConceptScore W4385212801C154945302 @default.
- W4385212801 hasConceptScore W4385212801C17744445 @default.
- W4385212801 hasConceptScore W4385212801C199539241 @default.
- W4385212801 hasConceptScore W4385212801C205649164 @default.
- W4385212801 hasConceptScore W4385212801C2777381055 @default.
- W4385212801 hasConceptScore W4385212801C2987469573 @default.
- W4385212801 hasConceptScore W4385212801C39432304 @default.
- W4385212801 hasConceptScore W4385212801C41008148 @default.
- W4385212801 hasLocation W43852128011 @default.
- W4385212801 hasOpenAccess W4385212801 @default.
- W4385212801 hasPrimaryLocation W43852128011 @default.
- W4385212801 hasRelatedWork W2015572591 @default.
- W4385212801 hasRelatedWork W214960768 @default.
- W4385212801 hasRelatedWork W2748952813 @default.
- W4385212801 hasRelatedWork W2755934673 @default.
- W4385212801 hasRelatedWork W2795584399 @default.
- W4385212801 hasRelatedWork W2899084033 @default.
- W4385212801 hasRelatedWork W2961085424 @default.
- W4385212801 hasRelatedWork W4306674287 @default.
- W4385212801 hasRelatedWork W593996998 @default.
- W4385212801 hasRelatedWork W4224009465 @default.
- W4385212801 isParatext "false" @default.
- W4385212801 isRetracted "false" @default.
- W4385212801 workType "book-chapter" @default.