Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385215118> ?p ?o ?g. }
- W4385215118 endingPage "11" @default.
- W4385215118 startingPage "1" @default.
- W4385215118 abstract "Deep learning has made important contributions to classification tasks applied to fault diagnosis. However, it is crucial to integrate the technologies into real industrial applications through cost-effective hardware. Edge computing, a new computing paradigm, has the potential to accelerate system response time, reduce bandwidth for transmission, and use fewer computing resources. In this article, the distillation quantization compression method based on energy entropy is applied to compress the convolutional neural network (CNN), which is deployed on a Cortex-M4 series microcontroller with only 192 kB of RAM and 512 kB of ROM. Additionally, based on the fault mechanism of rolling bearings, this article integrates the attention mechanism and envelope spectrum to verify the effectiveness of feature extraction by the CNN model, which effectively weakens invalid features in the distillation quantization process. The experimental results show that the proposed method has excellent performance in terms of memory overhead and inference speed, which has great potential in industrial applications." @default.
- W4385215118 created "2023-07-25" @default.
- W4385215118 creator A5012103623 @default.
- W4385215118 creator A5019232212 @default.
- W4385215118 creator A5024268506 @default.
- W4385215118 creator A5027166217 @default.
- W4385215118 creator A5029428788 @default.
- W4385215118 creator A5058330705 @default.
- W4385215118 creator A5070040561 @default.
- W4385215118 date "2023-01-01" @default.
- W4385215118 modified "2023-10-18" @default.
- W4385215118 title "EdgeCog: A Real-Time Bearing Fault Diagnosis System Based on Lightweight Edge Computing" @default.
- W4385215118 cites W2000982976 @default.
- W4385215118 cites W2066980082 @default.
- W4385215118 cites W2194775991 @default.
- W4385215118 cites W2416799949 @default.
- W4385215118 cites W2752782242 @default.
- W4385215118 cites W2765516066 @default.
- W4385215118 cites W2775811337 @default.
- W4385215118 cites W2799197246 @default.
- W4385215118 cites W2834072840 @default.
- W4385215118 cites W2982083293 @default.
- W4385215118 cites W2989818023 @default.
- W4385215118 cites W3005493426 @default.
- W4385215118 cites W3005735100 @default.
- W4385215118 cites W3025588465 @default.
- W4385215118 cites W3036708415 @default.
- W4385215118 cites W3085008781 @default.
- W4385215118 cites W3094105523 @default.
- W4385215118 cites W3113453806 @default.
- W4385215118 cites W3135729955 @default.
- W4385215118 cites W3138415272 @default.
- W4385215118 cites W3157459315 @default.
- W4385215118 cites W3173611137 @default.
- W4385215118 cites W3215924789 @default.
- W4385215118 cites W4206345228 @default.
- W4385215118 cites W4210291182 @default.
- W4385215118 cites W4213060227 @default.
- W4385215118 cites W4213238202 @default.
- W4385215118 cites W4221122242 @default.
- W4385215118 cites W4224001010 @default.
- W4385215118 cites W4225862880 @default.
- W4385215118 cites W4295441317 @default.
- W4385215118 cites W4308499722 @default.
- W4385215118 doi "https://doi.org/10.1109/tim.2023.3298403" @default.
- W4385215118 hasPublicationYear "2023" @default.
- W4385215118 type Work @default.
- W4385215118 citedByCount "0" @default.
- W4385215118 crossrefType "journal-article" @default.
- W4385215118 hasAuthorship W4385215118A5012103623 @default.
- W4385215118 hasAuthorship W4385215118A5019232212 @default.
- W4385215118 hasAuthorship W4385215118A5024268506 @default.
- W4385215118 hasAuthorship W4385215118A5027166217 @default.
- W4385215118 hasAuthorship W4385215118A5029428788 @default.
- W4385215118 hasAuthorship W4385215118A5058330705 @default.
- W4385215118 hasAuthorship W4385215118A5070040561 @default.
- W4385215118 hasConcept C106301342 @default.
- W4385215118 hasConcept C108583219 @default.
- W4385215118 hasConcept C111919701 @default.
- W4385215118 hasConcept C113775141 @default.
- W4385215118 hasConcept C11413529 @default.
- W4385215118 hasConcept C121332964 @default.
- W4385215118 hasConcept C138236772 @default.
- W4385215118 hasConcept C149635348 @default.
- W4385215118 hasConcept C154945302 @default.
- W4385215118 hasConcept C162307627 @default.
- W4385215118 hasConcept C173018170 @default.
- W4385215118 hasConcept C2778456923 @default.
- W4385215118 hasConcept C28855332 @default.
- W4385215118 hasConcept C41008148 @default.
- W4385215118 hasConcept C42935608 @default.
- W4385215118 hasConcept C50644808 @default.
- W4385215118 hasConcept C52622490 @default.
- W4385215118 hasConcept C62520636 @default.
- W4385215118 hasConcept C79403827 @default.
- W4385215118 hasConcept C79974875 @default.
- W4385215118 hasConcept C81363708 @default.
- W4385215118 hasConceptScore W4385215118C106301342 @default.
- W4385215118 hasConceptScore W4385215118C108583219 @default.
- W4385215118 hasConceptScore W4385215118C111919701 @default.
- W4385215118 hasConceptScore W4385215118C113775141 @default.
- W4385215118 hasConceptScore W4385215118C11413529 @default.
- W4385215118 hasConceptScore W4385215118C121332964 @default.
- W4385215118 hasConceptScore W4385215118C138236772 @default.
- W4385215118 hasConceptScore W4385215118C149635348 @default.
- W4385215118 hasConceptScore W4385215118C154945302 @default.
- W4385215118 hasConceptScore W4385215118C162307627 @default.
- W4385215118 hasConceptScore W4385215118C173018170 @default.
- W4385215118 hasConceptScore W4385215118C2778456923 @default.
- W4385215118 hasConceptScore W4385215118C28855332 @default.
- W4385215118 hasConceptScore W4385215118C41008148 @default.
- W4385215118 hasConceptScore W4385215118C42935608 @default.
- W4385215118 hasConceptScore W4385215118C50644808 @default.
- W4385215118 hasConceptScore W4385215118C52622490 @default.
- W4385215118 hasConceptScore W4385215118C62520636 @default.
- W4385215118 hasConceptScore W4385215118C79403827 @default.
- W4385215118 hasConceptScore W4385215118C79974875 @default.
- W4385215118 hasConceptScore W4385215118C81363708 @default.