Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385217870> ?p ?o ?g. }
- W4385217870 abstract "<sec> <title>BACKGROUND</title> Cognitive functional ability affects the accessibility of information technology (IT) and is thus something that should be controlled for in user experience (UX) research. However, many cognitive function assessment batteries are long and complex, making them impractical for use in conventional experimental time frames. Therefore, there is a need for a short and reliable cognitive assessment which has discriminant validity for cognitive functions needed for general IT tasks. One potential candidate is the Trail Making Test (TMT). </sec> <sec> <title>OBJECTIVE</title> The present study investigated the usefulness of a digital TMT as a cognitive profiling tool in IT-related UX research by assessing its predictive validity on general IT task performance, and exploring its discriminant validity according to discrete cognitive functions required to perform the IT task. </sec> <sec> <title>METHODS</title> A digital TMT (Parts A and B) named Axon was administered to 27 healthy participants, followed by administration of five IT tasks in the form of CAPTCHAs. The discrete cognitive functions required to perform each CAPTCHA were rated by trained evaluators. To further explain and cross-validate our results, the original TMT and two psychological assessments of visuomotor and short-term memory function were administered. </sec> <sec> <title>RESULTS</title> Axon A and B were administrable in under five minutes and overall performance was significantly predictive of general IT task performance (F(5, 19) = 6.352, p = 0.001, Wilks’ Lambda = 0.374). This result was driven by performance on Axon B (F(5, 19) = 3.382, p = 0.024, Wilks’ Lambda = 0.529), particularly for IT tasks involving the combination of executive and visual function. Axon was furthermore cross validated with the original TMT (pcorr = 0.001 and pcorr = 0.017 for A and B, respectively) and visuomotor and short-term memory tasks. </sec> <sec> <title>CONCLUSIONS</title> The results demonstrate that variance in IT task performance among an age-homogenous neurotypical population can be related to inter-subject variance in cognitive function as assessed by Axon. Although Axon’s predictive validity seemed stronger for tasks involving the combination of executive and visual function, these cognitive functions are arguably relevant to the majority of IT interfaces. In conclusion, and considering its short administration time and remote implementability, the Axon digital TMT has potential to be a useful cognitive profiling tool for IT-based UX research. </sec>" @default.
- W4385217870 created "2023-07-25" @default.
- W4385217870 creator A5050702705 @default.
- W4385217870 creator A5057476975 @default.
- W4385217870 creator A5089530560 @default.
- W4385217870 creator A5092533922 @default.
- W4385217870 date "2023-06-22" @default.
- W4385217870 modified "2023-09-27" @default.
- W4385217870 title "Digital Trail Making Test Time Predicts Information Technology Task Performance (Preprint)" @default.
- W4385217870 cites W1520376918 @default.
- W4385217870 cites W1847168837 @default.
- W4385217870 cites W1925507532 @default.
- W4385217870 cites W1966198120 @default.
- W4385217870 cites W1979424534 @default.
- W4385217870 cites W1983164551 @default.
- W4385217870 cites W1983182638 @default.
- W4385217870 cites W2000555003 @default.
- W4385217870 cites W2000991132 @default.
- W4385217870 cites W2017658548 @default.
- W4385217870 cites W2021898394 @default.
- W4385217870 cites W2033615114 @default.
- W4385217870 cites W2036592719 @default.
- W4385217870 cites W2044078009 @default.
- W4385217870 cites W2061237930 @default.
- W4385217870 cites W2061803514 @default.
- W4385217870 cites W2066788670 @default.
- W4385217870 cites W2070175596 @default.
- W4385217870 cites W2078544847 @default.
- W4385217870 cites W2080732726 @default.
- W4385217870 cites W2102513634 @default.
- W4385217870 cites W2104600495 @default.
- W4385217870 cites W2107150853 @default.
- W4385217870 cites W2111816181 @default.
- W4385217870 cites W2116241551 @default.
- W4385217870 cites W2124517301 @default.
- W4385217870 cites W2136224256 @default.
- W4385217870 cites W2139468070 @default.
- W4385217870 cites W2141018405 @default.
- W4385217870 cites W2149095485 @default.
- W4385217870 cites W2150456075 @default.
- W4385217870 cites W2156046656 @default.
- W4385217870 cites W2165758561 @default.
- W4385217870 cites W2167861404 @default.
- W4385217870 cites W2171305047 @default.
- W4385217870 cites W2176879981 @default.
- W4385217870 cites W2288313891 @default.
- W4385217870 cites W2411897611 @default.
- W4385217870 cites W2732960924 @default.
- W4385217870 cites W2747052988 @default.
- W4385217870 cites W2786397983 @default.
- W4385217870 cites W2894077275 @default.
- W4385217870 cites W2914109934 @default.
- W4385217870 cites W2916904544 @default.
- W4385217870 cites W2918463687 @default.
- W4385217870 cites W2976887998 @default.
- W4385217870 cites W2995697736 @default.
- W4385217870 cites W3035363551 @default.
- W4385217870 cites W3046249724 @default.
- W4385217870 cites W3159203425 @default.
- W4385217870 cites W3186313492 @default.
- W4385217870 cites W4245210811 @default.
- W4385217870 cites W4245686076 @default.
- W4385217870 cites W4248890322 @default.
- W4385217870 cites W4252827872 @default.
- W4385217870 cites W4290830236 @default.
- W4385217870 cites W4296295377 @default.
- W4385217870 cites W4312245581 @default.
- W4385217870 cites W4366239702 @default.
- W4385217870 doi "https://doi.org/10.2196/preprints.49992" @default.
- W4385217870 hasPublicationYear "2023" @default.
- W4385217870 type Work @default.
- W4385217870 citedByCount "0" @default.
- W4385217870 crossrefType "posted-content" @default.
- W4385217870 hasAuthorship W4385217870A5050702705 @default.
- W4385217870 hasAuthorship W4385217870A5057476975 @default.
- W4385217870 hasAuthorship W4385217870A5089530560 @default.
- W4385217870 hasAuthorship W4385217870A5092533922 @default.
- W4385217870 hasConcept C111919701 @default.
- W4385217870 hasConcept C119653847 @default.
- W4385217870 hasConcept C120107772 @default.
- W4385217870 hasConcept C127413603 @default.
- W4385217870 hasConcept C138496976 @default.
- W4385217870 hasConcept C146854351 @default.
- W4385217870 hasConcept C15744967 @default.
- W4385217870 hasConcept C167327282 @default.
- W4385217870 hasConcept C169760540 @default.
- W4385217870 hasConcept C169900460 @default.
- W4385217870 hasConcept C171606756 @default.
- W4385217870 hasConcept C17744445 @default.
- W4385217870 hasConcept C180747234 @default.
- W4385217870 hasConcept C187191949 @default.
- W4385217870 hasConcept C199539241 @default.
- W4385217870 hasConcept C201995342 @default.
- W4385217870 hasConcept C20685875 @default.
- W4385217870 hasConcept C2780451532 @default.
- W4385217870 hasConcept C3018868096 @default.
- W4385217870 hasConcept C41008148 @default.
- W4385217870 hasConcept C65414064 @default.
- W4385217870 hasConceptScore W4385217870C111919701 @default.
- W4385217870 hasConceptScore W4385217870C119653847 @default.