Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385220228> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W4385220228 abstract "Thyroid related illnesses are one of the most common among disorders of the endocrinal glands. This paper is an attempt at extracting the principal features of thyroid disease dataset. These relevant features trained on a suitable machine learning model can successfully diagnose thyroid diseases in a machine learning pipeline. In this pa-per, we propose a framework of iterative Association Rule Mining and Correlation Analysis, which integrates associa-tion rule mining algorithm and subsequent correlation-based analysis of the result set to extract dominant features in the dataset. Apriori and FP Growth algorithms, the two most popular association rule mining algorithms, were used to extract the major attributes which causes thyroid related sicknesses. The association rule mining is used in dimen-sionality reduction of the dataset. We have used a thyroidi-tis dataset for this study, which is first preprocessed to pre-pare it for association rule mining. Preprocessing is a signif-icant step in our method. Next step is the splitting of the dataset into n data subsets. The Apriori and FP growth algorithms are applied on these multiple data subsets to create frequent k-itemsets. The most relevant of the associa-tion rules are selected by a majority voting from the result set generated after the application of association rule mining. The result set, comprising of the features which are selected as the principal attributes are again filtered using correlation analysis. The results show that gender factor is the most dominant of all features. It shows a predominance in association of women with Thyroid diseases than men. In the proposed method, the dataset undergoes a two-step process of refinement and consequently, association rules generated gives valuable insights into the thyroid related disease’s causative factors. The experimental results show that the performance of the proposed framework helps in principal feature selection, and thus can be used in dimen-sionality reduction of a dataset in the pre-processing step of classification and prediction of thyroid diseases. This framework can be used in the pipeline of thyroid disease prediction systems." @default.
- W4385220228 created "2023-07-25" @default.
- W4385220228 creator A5068524152 @default.
- W4385220228 creator A5082815608 @default.
- W4385220228 date "2023-05-12" @default.
- W4385220228 modified "2023-09-27" @default.
- W4385220228 title "Association Rule Extraction and Correlation Analysis Framework for Dominant Feature Selection in Thyroid Disease Data" @default.
- W4385220228 cites W2030969394 @default.
- W4385220228 cites W2033882181 @default.
- W4385220228 cites W2063616207 @default.
- W4385220228 cites W2069392223 @default.
- W4385220228 cites W2107863647 @default.
- W4385220228 cites W2118978221 @default.
- W4385220228 cites W2161198425 @default.
- W4385220228 cites W2166559705 @default.
- W4385220228 cites W2464424134 @default.
- W4385220228 doi "https://doi.org/10.1109/icacite57410.2023.10183334" @default.
- W4385220228 hasPublicationYear "2023" @default.
- W4385220228 type Work @default.
- W4385220228 citedByCount "0" @default.
- W4385220228 crossrefType "proceedings-article" @default.
- W4385220228 hasAuthorship W4385220228A5068524152 @default.
- W4385220228 hasAuthorship W4385220228A5082815608 @default.
- W4385220228 hasConcept C117220453 @default.
- W4385220228 hasConcept C119857082 @default.
- W4385220228 hasConcept C124101348 @default.
- W4385220228 hasConcept C148483581 @default.
- W4385220228 hasConcept C153180895 @default.
- W4385220228 hasConcept C154945302 @default.
- W4385220228 hasConcept C177264268 @default.
- W4385220228 hasConcept C193524817 @default.
- W4385220228 hasConcept C199360897 @default.
- W4385220228 hasConcept C2524010 @default.
- W4385220228 hasConcept C33923547 @default.
- W4385220228 hasConcept C34736171 @default.
- W4385220228 hasConcept C41008148 @default.
- W4385220228 hasConcept C81440476 @default.
- W4385220228 hasConceptScore W4385220228C117220453 @default.
- W4385220228 hasConceptScore W4385220228C119857082 @default.
- W4385220228 hasConceptScore W4385220228C124101348 @default.
- W4385220228 hasConceptScore W4385220228C148483581 @default.
- W4385220228 hasConceptScore W4385220228C153180895 @default.
- W4385220228 hasConceptScore W4385220228C154945302 @default.
- W4385220228 hasConceptScore W4385220228C177264268 @default.
- W4385220228 hasConceptScore W4385220228C193524817 @default.
- W4385220228 hasConceptScore W4385220228C199360897 @default.
- W4385220228 hasConceptScore W4385220228C2524010 @default.
- W4385220228 hasConceptScore W4385220228C33923547 @default.
- W4385220228 hasConceptScore W4385220228C34736171 @default.
- W4385220228 hasConceptScore W4385220228C41008148 @default.
- W4385220228 hasConceptScore W4385220228C81440476 @default.
- W4385220228 hasLocation W43852202281 @default.
- W4385220228 hasOpenAccess W4385220228 @default.
- W4385220228 hasPrimaryLocation W43852202281 @default.
- W4385220228 hasRelatedWork W2014230537 @default.
- W4385220228 hasRelatedWork W2086429535 @default.
- W4385220228 hasRelatedWork W2347219288 @default.
- W4385220228 hasRelatedWork W2367209111 @default.
- W4385220228 hasRelatedWork W2370092241 @default.
- W4385220228 hasRelatedWork W2379665788 @default.
- W4385220228 hasRelatedWork W2382078898 @default.
- W4385220228 hasRelatedWork W2389064843 @default.
- W4385220228 hasRelatedWork W2390733913 @default.
- W4385220228 hasRelatedWork W2607264580 @default.
- W4385220228 isParatext "false" @default.
- W4385220228 isRetracted "false" @default.
- W4385220228 workType "article" @default.