Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385220478> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4385220478 abstract "Lesions develop on the retina of the eyes as a result of the progressive eye condition known as diabetic retinopathy (DR), which is brought on by type-2 diabetes. In especially for the working-age population in sustainable nations, it is thought that Diabetes Retinopathy is the main cause of blindness in diabetes patients. The aim of the treatment appears to be to maintain the patient's degree of eyesight because the issue is chronic. Diabetic retinopathy must be accurately identified in order to fully protect the patient's vision. The major issue with DR detection is manual diagnosis, which is time-consuming, expensive, and labor-intensive. A retinal scan of the patient's eyes must also be evaluated by an ophthalmologist as part of the treatment. The latter also appears to be more challenging, particularly in the early phases of the ailment when sickness indications are less obvious in the photos. Early detection of diabetic retinopathy has become easier because of deep learning algorithms, and images of the retinal fundus (DR) may now be analysed using machine learning. There are various stages of diabetic retinopathy, and the early stages are symptomless. Ophthalmologists can spot some retinal issues, but they can't always determine their root causes or stages of development. Ophthalmologists advise retina specialists to treat disease as a result. Bayesian neural networks (BNNs) had been used to benchmark the binary categorization of diabetic retinopathy as referable or non-referable in the current system. We suggest developing a Convolution neural network (CNN) and data analysis method to categorise diabetic retinopathy based on clinical data, predicting whether the patient is diabetic or not and identifying its stage with estimation, employing measurements are needed to maximise the intended performance measure with different datasets and clinical lesion images." @default.
- W4385220478 created "2023-07-25" @default.
- W4385220478 creator A5013992750 @default.
- W4385220478 creator A5038949021 @default.
- W4385220478 date "2023-05-12" @default.
- W4385220478 modified "2023-09-27" @default.
- W4385220478 title "An Efficiency way to analyse Diabetic Retinopathy Detection and Classification using Deep Learning Techniques" @default.
- W4385220478 cites W2194775991 @default.
- W4385220478 cites W2772615650 @default.
- W4385220478 cites W2793119512 @default.
- W4385220478 cites W2902728637 @default.
- W4385220478 cites W3091199344 @default.
- W4385220478 doi "https://doi.org/10.1109/icacite57410.2023.10182642" @default.
- W4385220478 hasPublicationYear "2023" @default.
- W4385220478 type Work @default.
- W4385220478 citedByCount "0" @default.
- W4385220478 crossrefType "proceedings-article" @default.
- W4385220478 hasAuthorship W4385220478A5013992750 @default.
- W4385220478 hasAuthorship W4385220478A5038949021 @default.
- W4385220478 hasConcept C118487528 @default.
- W4385220478 hasConcept C119767625 @default.
- W4385220478 hasConcept C126322002 @default.
- W4385220478 hasConcept C134018914 @default.
- W4385220478 hasConcept C154945302 @default.
- W4385220478 hasConcept C15744967 @default.
- W4385220478 hasConcept C169760540 @default.
- W4385220478 hasConcept C2776391266 @default.
- W4385220478 hasConcept C2777093970 @default.
- W4385220478 hasConcept C2778313320 @default.
- W4385220478 hasConcept C2779134260 @default.
- W4385220478 hasConcept C2779829184 @default.
- W4385220478 hasConcept C2780827179 @default.
- W4385220478 hasConcept C2780929884 @default.
- W4385220478 hasConcept C2908647359 @default.
- W4385220478 hasConcept C41008148 @default.
- W4385220478 hasConcept C555293320 @default.
- W4385220478 hasConcept C71924100 @default.
- W4385220478 hasConcept C94124525 @default.
- W4385220478 hasConcept C99454951 @default.
- W4385220478 hasConceptScore W4385220478C118487528 @default.
- W4385220478 hasConceptScore W4385220478C119767625 @default.
- W4385220478 hasConceptScore W4385220478C126322002 @default.
- W4385220478 hasConceptScore W4385220478C134018914 @default.
- W4385220478 hasConceptScore W4385220478C154945302 @default.
- W4385220478 hasConceptScore W4385220478C15744967 @default.
- W4385220478 hasConceptScore W4385220478C169760540 @default.
- W4385220478 hasConceptScore W4385220478C2776391266 @default.
- W4385220478 hasConceptScore W4385220478C2777093970 @default.
- W4385220478 hasConceptScore W4385220478C2778313320 @default.
- W4385220478 hasConceptScore W4385220478C2779134260 @default.
- W4385220478 hasConceptScore W4385220478C2779829184 @default.
- W4385220478 hasConceptScore W4385220478C2780827179 @default.
- W4385220478 hasConceptScore W4385220478C2780929884 @default.
- W4385220478 hasConceptScore W4385220478C2908647359 @default.
- W4385220478 hasConceptScore W4385220478C41008148 @default.
- W4385220478 hasConceptScore W4385220478C555293320 @default.
- W4385220478 hasConceptScore W4385220478C71924100 @default.
- W4385220478 hasConceptScore W4385220478C94124525 @default.
- W4385220478 hasConceptScore W4385220478C99454951 @default.
- W4385220478 hasLocation W43852204781 @default.
- W4385220478 hasOpenAccess W4385220478 @default.
- W4385220478 hasPrimaryLocation W43852204781 @default.
- W4385220478 hasRelatedWork W1982694306 @default.
- W4385220478 hasRelatedWork W2389548857 @default.
- W4385220478 hasRelatedWork W2523522787 @default.
- W4385220478 hasRelatedWork W2898850272 @default.
- W4385220478 hasRelatedWork W3092845661 @default.
- W4385220478 hasRelatedWork W3137177488 @default.
- W4385220478 hasRelatedWork W3171554315 @default.
- W4385220478 hasRelatedWork W47848033 @default.
- W4385220478 hasRelatedWork W98850343 @default.
- W4385220478 hasRelatedWork W2593962225 @default.
- W4385220478 isParatext "false" @default.
- W4385220478 isRetracted "false" @default.
- W4385220478 workType "article" @default.