Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385220594> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4385220594 endingPage "8494" @default.
- W4385220594 startingPage "8494" @default.
- W4385220594 abstract "Small data sets make developing calibration models using deep neural networks difficult because it is easy to overfit the system. We developed two deep neural network architectures by revising two existing network architectures: the U-Net and the attention mechanism. The major changes were to use 1D convolutional layers to replace the fully connected layers. We also designed and combined average pooling and maximum pooling in our revised networks, respectively. We applied these revised network architectures to three publicly available data sets and the resulting calibration models can generate acceptable results for general quantitative analysis. It also generated rather good results for data sets that concern calibration transfer. It demonstrates that constructing network architectures by properly revising existing successful network architectures may provide additional choices in the exploration of the application of deep neural network in analytical chemistry." @default.
- W4385220594 created "2023-07-25" @default.
- W4385220594 creator A5018519007 @default.
- W4385220594 creator A5021116086 @default.
- W4385220594 creator A5024185211 @default.
- W4385220594 creator A5079941100 @default.
- W4385220594 date "2023-07-23" @default.
- W4385220594 modified "2023-10-18" @default.
- W4385220594 title "Two Revised Deep Neural Networks and Their Applications in Quantitative Analysis Based on Near-Infrared Spectroscopy" @default.
- W4385220594 cites W1901129140 @default.
- W4385220594 cites W2049317953 @default.
- W4385220594 cites W2194775991 @default.
- W4385220594 cites W2799365888 @default.
- W4385220594 cites W2887409581 @default.
- W4385220594 cites W2917070261 @default.
- W4385220594 cites W2972243934 @default.
- W4385220594 cites W2998457864 @default.
- W4385220594 cites W3005251202 @default.
- W4385220594 cites W3023114766 @default.
- W4385220594 cites W3036278241 @default.
- W4385220594 cites W3127520010 @default.
- W4385220594 cites W3206687084 @default.
- W4385220594 cites W3210740626 @default.
- W4385220594 cites W4206591967 @default.
- W4385220594 cites W4308931218 @default.
- W4385220594 cites W4367301363 @default.
- W4385220594 doi "https://doi.org/10.3390/app13148494" @default.
- W4385220594 hasPublicationYear "2023" @default.
- W4385220594 type Work @default.
- W4385220594 citedByCount "0" @default.
- W4385220594 crossrefType "journal-article" @default.
- W4385220594 hasAuthorship W4385220594A5018519007 @default.
- W4385220594 hasAuthorship W4385220594A5021116086 @default.
- W4385220594 hasAuthorship W4385220594A5024185211 @default.
- W4385220594 hasAuthorship W4385220594A5079941100 @default.
- W4385220594 hasBestOaLocation W43852205941 @default.
- W4385220594 hasConcept C105795698 @default.
- W4385220594 hasConcept C108583219 @default.
- W4385220594 hasConcept C119857082 @default.
- W4385220594 hasConcept C124101348 @default.
- W4385220594 hasConcept C154945302 @default.
- W4385220594 hasConcept C165838908 @default.
- W4385220594 hasConcept C22019652 @default.
- W4385220594 hasConcept C2984842247 @default.
- W4385220594 hasConcept C33923547 @default.
- W4385220594 hasConcept C41008148 @default.
- W4385220594 hasConcept C50644808 @default.
- W4385220594 hasConcept C70437156 @default.
- W4385220594 hasConcept C81363708 @default.
- W4385220594 hasConceptScore W4385220594C105795698 @default.
- W4385220594 hasConceptScore W4385220594C108583219 @default.
- W4385220594 hasConceptScore W4385220594C119857082 @default.
- W4385220594 hasConceptScore W4385220594C124101348 @default.
- W4385220594 hasConceptScore W4385220594C154945302 @default.
- W4385220594 hasConceptScore W4385220594C165838908 @default.
- W4385220594 hasConceptScore W4385220594C22019652 @default.
- W4385220594 hasConceptScore W4385220594C2984842247 @default.
- W4385220594 hasConceptScore W4385220594C33923547 @default.
- W4385220594 hasConceptScore W4385220594C41008148 @default.
- W4385220594 hasConceptScore W4385220594C50644808 @default.
- W4385220594 hasConceptScore W4385220594C70437156 @default.
- W4385220594 hasConceptScore W4385220594C81363708 @default.
- W4385220594 hasIssue "14" @default.
- W4385220594 hasLocation W43852205941 @default.
- W4385220594 hasOpenAccess W4385220594 @default.
- W4385220594 hasPrimaryLocation W43852205941 @default.
- W4385220594 hasRelatedWork W2279398222 @default.
- W4385220594 hasRelatedWork W2517027266 @default.
- W4385220594 hasRelatedWork W2915754718 @default.
- W4385220594 hasRelatedWork W2980872133 @default.
- W4385220594 hasRelatedWork W3099765033 @default.
- W4385220594 hasRelatedWork W4220996320 @default.
- W4385220594 hasRelatedWork W4283701629 @default.
- W4385220594 hasRelatedWork W4299822940 @default.
- W4385220594 hasRelatedWork W4321786298 @default.
- W4385220594 hasRelatedWork W4362499066 @default.
- W4385220594 hasVolume "13" @default.
- W4385220594 isParatext "false" @default.
- W4385220594 isRetracted "false" @default.
- W4385220594 workType "article" @default.