Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385221639> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W4385221639 endingPage "165" @default.
- W4385221639 startingPage "156" @default.
- W4385221639 abstract "For a simple graph G = (V (G), E(G)), a total labeling ∂ is called an edge irregular total k-labeling of G if ∂ : V (G) ∪ E(G) → {1, 2, . . . , k} such that for any two different edges uv and u'v' in E(G), we have wt∂(uv) not equal to wt∂(u'v') where wt∂(uv) = ∂(u) + ∂(v) + ∂(uv). The minimum k for which G has an edge irregulartotal k-labeling is called the total edge irregularity strength, denoted by tes(G). It is known that ceil((|E(G)|+2)/3) is a lower bound for the total edge irregularity strength of a graph G. In this paper we prove that if G is a bipartite graph for which this bound is tight then this is also true for Cartesian product of G with any path." @default.
- W4385221639 created "2023-07-25" @default.
- W4385221639 creator A5065831321 @default.
- W4385221639 creator A5066505022 @default.
- W4385221639 creator A5069797259 @default.
- W4385221639 date "2023-07-19" @default.
- W4385221639 modified "2023-10-14" @default.
- W4385221639 title "Total Edge Irregularity Strength of the Cartesian Product of Bipartite Graphs and Paths" @default.
- W4385221639 doi "https://doi.org/10.22342/jims.29.2.1321.156-165" @default.
- W4385221639 hasPublicationYear "2023" @default.
- W4385221639 type Work @default.
- W4385221639 citedByCount "0" @default.
- W4385221639 crossrefType "journal-article" @default.
- W4385221639 hasAuthorship W4385221639A5065831321 @default.
- W4385221639 hasAuthorship W4385221639A5066505022 @default.
- W4385221639 hasAuthorship W4385221639A5069797259 @default.
- W4385221639 hasBestOaLocation W43852216391 @default.
- W4385221639 hasConcept C114614502 @default.
- W4385221639 hasConcept C118615104 @default.
- W4385221639 hasConcept C132525143 @default.
- W4385221639 hasConcept C134306372 @default.
- W4385221639 hasConcept C162307627 @default.
- W4385221639 hasConcept C197657726 @default.
- W4385221639 hasConcept C2993105083 @default.
- W4385221639 hasConcept C33923547 @default.
- W4385221639 hasConcept C41008148 @default.
- W4385221639 hasConcept C65236422 @default.
- W4385221639 hasConcept C76155785 @default.
- W4385221639 hasConcept C77553402 @default.
- W4385221639 hasConceptScore W4385221639C114614502 @default.
- W4385221639 hasConceptScore W4385221639C118615104 @default.
- W4385221639 hasConceptScore W4385221639C132525143 @default.
- W4385221639 hasConceptScore W4385221639C134306372 @default.
- W4385221639 hasConceptScore W4385221639C162307627 @default.
- W4385221639 hasConceptScore W4385221639C197657726 @default.
- W4385221639 hasConceptScore W4385221639C2993105083 @default.
- W4385221639 hasConceptScore W4385221639C33923547 @default.
- W4385221639 hasConceptScore W4385221639C41008148 @default.
- W4385221639 hasConceptScore W4385221639C65236422 @default.
- W4385221639 hasConceptScore W4385221639C76155785 @default.
- W4385221639 hasConceptScore W4385221639C77553402 @default.
- W4385221639 hasLocation W43852216391 @default.
- W4385221639 hasOpenAccess W4385221639 @default.
- W4385221639 hasPrimaryLocation W43852216391 @default.
- W4385221639 hasRelatedWork W1588305999 @default.
- W4385221639 hasRelatedWork W2077383796 @default.
- W4385221639 hasRelatedWork W2091200007 @default.
- W4385221639 hasRelatedWork W2172267233 @default.
- W4385221639 hasRelatedWork W2371352078 @default.
- W4385221639 hasRelatedWork W2782153997 @default.
- W4385221639 hasRelatedWork W2797827892 @default.
- W4385221639 hasRelatedWork W2979089476 @default.
- W4385221639 hasRelatedWork W4385221639 @default.
- W4385221639 hasRelatedWork W6227737 @default.
- W4385221639 isParatext "false" @default.
- W4385221639 isRetracted "false" @default.
- W4385221639 workType "article" @default.