Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385224871> ?p ?o ?g. }
- W4385224871 endingPage "1940" @default.
- W4385224871 startingPage "1940" @default.
- W4385224871 abstract "Accurately estimating aboveground dry biomass (ADB) is crucial. The ADB of rice has primarily been estimated using vegetation indices with several discrete bands; nevertheless, these indices cannot take advantage of continuous bands available with hyperspectral remote sensing. This study analyzed the quantitative relationship between canopy hyperspectral characteristic parameters (HCPs) and the ADB of rice. Twenty HCPs were used, including red edge area (SDr), blue edge area (SDb), and others. The variable-screening methods involved stepwise regression (SR), a regression coefficient (RC), variable importance in projection (vip), and random forest (RF). Stepwise and partial least squares regression methods were employed with traditional linear regression as well as machine learning methods including random forest (RF), a support vector machine (SVM), a BP artificial neural network (BPNN), and an extreme learning machine. Whole- and screening-variable models were constructed to estimate rice ADB at jointing, booting, heading, and maturing stages and across growth stages. Screening-variable models include SVM models based on SR (SVM-sr), RF models based on vip (RF-vip), and others. The results show that the HCPs had a significant correlation with ADB containing elements in the red edge region, namely SDr, SDr/SDb, and (SDr − SDb)/(SDr + SDb) at each growth stage. In addition, the screening performance of vip and SR was better than that of RC and RF, and fewer variables were screened. Moreover, the HCPs of the red edge region were screened using different screening methods at each growth stage. Among them, SDr/SDb and (SDr − SDb)/(SDr + SDb) appeared frequently, indicating they are important. Furthermore, at each growth stage, ADB could be well-estimated using diverse models with the RF modeling method based on vip screening variables found to be the best modeling method for ADB estimation; the independent variables of the RF-vip model involved the (SDr − SDb)/(SDr + SDb) at each growth stage." @default.
- W4385224871 created "2023-07-25" @default.
- W4385224871 creator A5006460662 @default.
- W4385224871 creator A5008606774 @default.
- W4385224871 creator A5018335630 @default.
- W4385224871 creator A5028441166 @default.
- W4385224871 creator A5029462264 @default.
- W4385224871 creator A5040847603 @default.
- W4385224871 creator A5042539955 @default.
- W4385224871 creator A5042816353 @default.
- W4385224871 creator A5047645830 @default.
- W4385224871 creator A5076143291 @default.
- W4385224871 creator A5083258855 @default.
- W4385224871 date "2023-07-22" @default.
- W4385224871 modified "2023-09-27" @default.
- W4385224871 title "Estimation Model of Rice Aboveground Dry Biomass Based on the Machine Learning and Hyperspectral Characteristic Parameters of the Canopy" @default.
- W4385224871 cites W1986000120 @default.
- W4385224871 cites W1987097445 @default.
- W4385224871 cites W2007939589 @default.
- W4385224871 cites W2011892677 @default.
- W4385224871 cites W2012519352 @default.
- W4385224871 cites W2019305916 @default.
- W4385224871 cites W2021873216 @default.
- W4385224871 cites W2023719373 @default.
- W4385224871 cites W2030516180 @default.
- W4385224871 cites W2046292468 @default.
- W4385224871 cites W2059523177 @default.
- W4385224871 cites W2063051191 @default.
- W4385224871 cites W2070635614 @default.
- W4385224871 cites W2073503722 @default.
- W4385224871 cites W2075021380 @default.
- W4385224871 cites W2076143808 @default.
- W4385224871 cites W2078967929 @default.
- W4385224871 cites W2079842406 @default.
- W4385224871 cites W2081734510 @default.
- W4385224871 cites W2089464686 @default.
- W4385224871 cites W2096514774 @default.
- W4385224871 cites W2098722265 @default.
- W4385224871 cites W2105756833 @default.
- W4385224871 cites W2111072639 @default.
- W4385224871 cites W2112590417 @default.
- W4385224871 cites W2118703810 @default.
- W4385224871 cites W2124967513 @default.
- W4385224871 cites W2129483042 @default.
- W4385224871 cites W2153635508 @default.
- W4385224871 cites W2188767531 @default.
- W4385224871 cites W2408673549 @default.
- W4385224871 cites W2546703895 @default.
- W4385224871 cites W2563118026 @default.
- W4385224871 cites W2603228623 @default.
- W4385224871 cites W2784201940 @default.
- W4385224871 cites W2801958376 @default.
- W4385224871 cites W2805141116 @default.
- W4385224871 cites W2806394060 @default.
- W4385224871 cites W2901928690 @default.
- W4385224871 cites W2903404264 @default.
- W4385224871 cites W2904950031 @default.
- W4385224871 cites W2910920637 @default.
- W4385224871 cites W2911964244 @default.
- W4385224871 cites W2912708352 @default.
- W4385224871 cites W2913208644 @default.
- W4385224871 cites W2928386952 @default.
- W4385224871 cites W2972880073 @default.
- W4385224871 cites W2987472362 @default.
- W4385224871 cites W3007765580 @default.
- W4385224871 cites W3033521935 @default.
- W4385224871 cites W3135067502 @default.
- W4385224871 cites W3135367965 @default.
- W4385224871 cites W3196967960 @default.
- W4385224871 cites W3205412344 @default.
- W4385224871 cites W3206966913 @default.
- W4385224871 cites W4239510810 @default.
- W4385224871 doi "https://doi.org/10.3390/agronomy13071940" @default.
- W4385224871 hasPublicationYear "2023" @default.
- W4385224871 type Work @default.
- W4385224871 citedByCount "0" @default.
- W4385224871 crossrefType "journal-article" @default.
- W4385224871 hasAuthorship W4385224871A5006460662 @default.
- W4385224871 hasAuthorship W4385224871A5008606774 @default.
- W4385224871 hasAuthorship W4385224871A5018335630 @default.
- W4385224871 hasAuthorship W4385224871A5028441166 @default.
- W4385224871 hasAuthorship W4385224871A5029462264 @default.
- W4385224871 hasAuthorship W4385224871A5040847603 @default.
- W4385224871 hasAuthorship W4385224871A5042539955 @default.
- W4385224871 hasAuthorship W4385224871A5042816353 @default.
- W4385224871 hasAuthorship W4385224871A5047645830 @default.
- W4385224871 hasAuthorship W4385224871A5076143291 @default.
- W4385224871 hasAuthorship W4385224871A5083258855 @default.
- W4385224871 hasBestOaLocation W43852248711 @default.
- W4385224871 hasConcept C101000010 @default.
- W4385224871 hasConcept C105795698 @default.
- W4385224871 hasConcept C11413529 @default.
- W4385224871 hasConcept C115540264 @default.
- W4385224871 hasConcept C12267149 @default.
- W4385224871 hasConcept C152877465 @default.
- W4385224871 hasConcept C154945302 @default.
- W4385224871 hasConcept C159078339 @default.
- W4385224871 hasConcept C169258074 @default.