Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385225629> ?p ?o ?g. }
- W4385225629 abstract "The ecological and evolutionary dynamics of large sets of individuals can be theoretically addressed using ideas and tools from statistical mechanics. This strategy has been addressed in the literature, both in the context of population genetics –whose focus is of genes or “genotypes”— and in adaptive dynamics, putting the emphasis on traits or “phenotypes”. Following this tradition, here we construct a framework allowing us to derive “macroscopic” evolutionary equations from a rather general “microscopic” stochastic dynamics representing the fundamental processes of reproduction, mutation and selection in a large community of individuals, each one characterized by its phenotypic features. Importantly, in our setup, ecological and evolutionary timescales are intertwined, which makes it particularly suitable to describe microbial communities, a timely topic of utmost relevance. Our framework leads to a probabilistic description of the distribution of individuals in phenotypic space —even in the case of arbitrarily large populations— as encoded in what we call “generalized Crow-Kimura equation” or “generalized replicator-mutator equation”. We discuss the limits in which such an equation reduces to the (deterministic) theory of “adaptive dynamics” (i.e. the standard approach to evolutionary dynamics in phenotypic space. Moreover, we emphasize the aspects of the theory that are beyond the reach of standard adaptive dynamics. In particular, by working out, as a guiding example, a simple model of a growing and competing population, we show that the resulting probability distribution can exhibit “dynamical phase transitions” changing from unimodal to bimodal —by means of an evolutionary branching— or to multimodal, in a cascade of evolutionary branching events. Furthermore, our formalism allows us to rationalize these cascades of transitions using the parsimonious approach of Landau’s theory of phase transitions. Finally, we extend the theory to account for finite populations and illustrate the possible consequences of the resulting stochastic or “demographic” effects. Altogether the present framework extends and/or complements existing approaches to evolutionary/adaptive dynamics and paves the way to more systematic studies of e.g. microbial communities as well as to future developments including theoretical analyses of the evolutionary process from the general perspective of non-equilibrium statistical mechanics." @default.
- W4385225629 created "2023-07-25" @default.
- W4385225629 creator A5026112679 @default.
- W4385225629 creator A5030462347 @default.
- W4385225629 date "2023-07-23" @default.
- W4385225629 modified "2023-10-10" @default.
- W4385225629 title "Statistical mechanics of phenotypic eco-evolution: from adaptive dynamics to complex diversification" @default.
- W4385225629 cites W134271320 @default.
- W4385225629 cites W1540989094 @default.
- W4385225629 cites W1541870771 @default.
- W4385225629 cites W1545559183 @default.
- W4385225629 cites W1574004712 @default.
- W4385225629 cites W1595124364 @default.
- W4385225629 cites W1600814660 @default.
- W4385225629 cites W1613930988 @default.
- W4385225629 cites W1806649701 @default.
- W4385225629 cites W1821620939 @default.
- W4385225629 cites W1859137695 @default.
- W4385225629 cites W188774500 @default.
- W4385225629 cites W1941446062 @default.
- W4385225629 cites W1968994863 @default.
- W4385225629 cites W1980244435 @default.
- W4385225629 cites W1981310988 @default.
- W4385225629 cites W1985036361 @default.
- W4385225629 cites W1987908112 @default.
- W4385225629 cites W1988769349 @default.
- W4385225629 cites W1990504411 @default.
- W4385225629 cites W1991037583 @default.
- W4385225629 cites W1991698856 @default.
- W4385225629 cites W2000776663 @default.
- W4385225629 cites W2003814254 @default.
- W4385225629 cites W2007577962 @default.
- W4385225629 cites W2008338969 @default.
- W4385225629 cites W2011601608 @default.
- W4385225629 cites W2017464661 @default.
- W4385225629 cites W2018811393 @default.
- W4385225629 cites W2021562946 @default.
- W4385225629 cites W2026035905 @default.
- W4385225629 cites W2028678048 @default.
- W4385225629 cites W2033860043 @default.
- W4385225629 cites W2039208666 @default.
- W4385225629 cites W2047647995 @default.
- W4385225629 cites W2048138547 @default.
- W4385225629 cites W2051559608 @default.
- W4385225629 cites W2055595349 @default.
- W4385225629 cites W2058473280 @default.
- W4385225629 cites W2059604253 @default.
- W4385225629 cites W2064101936 @default.
- W4385225629 cites W2065172718 @default.
- W4385225629 cites W2065673339 @default.
- W4385225629 cites W2069780164 @default.
- W4385225629 cites W2071691212 @default.
- W4385225629 cites W2077742157 @default.
- W4385225629 cites W2079033018 @default.
- W4385225629 cites W2079152736 @default.
- W4385225629 cites W2082168227 @default.
- W4385225629 cites W2083288637 @default.
- W4385225629 cites W2083310645 @default.
- W4385225629 cites W2085728653 @default.
- W4385225629 cites W2090966266 @default.
- W4385225629 cites W2092622303 @default.
- W4385225629 cites W2098069022 @default.
- W4385225629 cites W2112945902 @default.
- W4385225629 cites W2117359342 @default.
- W4385225629 cites W2118001436 @default.
- W4385225629 cites W2126643167 @default.
- W4385225629 cites W2142785933 @default.
- W4385225629 cites W2146397496 @default.
- W4385225629 cites W2147637673 @default.
- W4385225629 cites W2148554623 @default.
- W4385225629 cites W2152807971 @default.
- W4385225629 cites W2153587490 @default.
- W4385225629 cites W2154279044 @default.
- W4385225629 cites W2158892874 @default.
- W4385225629 cites W2187941449 @default.
- W4385225629 cites W2251942088 @default.
- W4385225629 cites W2321508627 @default.
- W4385225629 cites W2332905493 @default.
- W4385225629 cites W2338004145 @default.
- W4385225629 cites W2344225164 @default.
- W4385225629 cites W2490067528 @default.
- W4385225629 cites W2505348534 @default.
- W4385225629 cites W2635587014 @default.
- W4385225629 cites W2738793433 @default.
- W4385225629 cites W2761527979 @default.
- W4385225629 cites W2766358903 @default.
- W4385225629 cites W2797101767 @default.
- W4385225629 cites W2808326017 @default.
- W4385225629 cites W2951138900 @default.
- W4385225629 cites W2951464653 @default.
- W4385225629 cites W2952167528 @default.
- W4385225629 cites W2964212326 @default.
- W4385225629 cites W2975336707 @default.
- W4385225629 cites W29828172 @default.
- W4385225629 cites W3003432383 @default.
- W4385225629 cites W3005423028 @default.
- W4385225629 cites W3009305840 @default.
- W4385225629 cites W3021904993 @default.
- W4385225629 cites W3022585649 @default.
- W4385225629 cites W3087923042 @default.