Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385232289> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4385232289 abstract "Being overweight may be caused by eating too many calories. It is a curable medical condition defined by abnormal fat accumulation in the body. Diabetes, excessive cholesterol, and heart attacks are the most common, although high blood pressure, colon cancer, and prostate cancer are also common. Computer techniques are often utilized to address such difficulties. In this work, we develop a system that detects and identifies food allergies using food photographs. To summaries, powerful computer algorithms such as transfer learning (ResNet50) have been taught to detect food type and validate the identified label in dataset food 101, as well as supply nutrients. The fundamental purpose of this study was to create a single framework capable of managing the difficult process of detecting, localizing, and classifying food allergies. Furthermore, larger weight parameter optimization using Adam and RMS Prop optimizers was attempted to increase their performance on healthy and allergic food image datasets. The Resnet-50 was trained to obtain the greatest mean average accuracy when compared to the other transfer learning meta-architectures. It achieved the best-identifying results by utilizing an Adam optimizer and obtaining 95% accuracy. The suggested technique was discovered to be novel since it detects all food types and then provides the nutrients of that meal from another dataset. In reality, employing the transfer learning technique to successfully diagnose food allergies would assist to prevent the adverse application of issues in diet management." @default.
- W4385232289 created "2023-07-26" @default.
- W4385232289 creator A5021739914 @default.
- W4385232289 creator A5029997697 @default.
- W4385232289 creator A5049989175 @default.
- W4385232289 creator A5080276323 @default.
- W4385232289 date "2023-05-18" @default.
- W4385232289 modified "2023-10-17" @default.
- W4385232289 title "Transfer Learning Based Models for Food Detection Using ResNet-50" @default.
- W4385232289 cites W1487650930 @default.
- W4385232289 cites W1975347641 @default.
- W4385232289 cites W2097022788 @default.
- W4385232289 cites W2120582212 @default.
- W4385232289 cites W2138637348 @default.
- W4385232289 cites W2147172644 @default.
- W4385232289 cites W2297787078 @default.
- W4385232289 cites W2756250012 @default.
- W4385232289 cites W2758843122 @default.
- W4385232289 cites W2790802352 @default.
- W4385232289 cites W2891581756 @default.
- W4385232289 cites W2891717089 @default.
- W4385232289 cites W2904249286 @default.
- W4385232289 cites W2906920259 @default.
- W4385232289 cites W2972923985 @default.
- W4385232289 cites W3002658142 @default.
- W4385232289 cites W3020979610 @default.
- W4385232289 cites W3038128597 @default.
- W4385232289 cites W3102840478 @default.
- W4385232289 cites W3109010169 @default.
- W4385232289 cites W3121050300 @default.
- W4385232289 cites W3133886746 @default.
- W4385232289 cites W3134202186 @default.
- W4385232289 cites W3148226130 @default.
- W4385232289 cites W3151529617 @default.
- W4385232289 cites W3173665001 @default.
- W4385232289 cites W4238741435 @default.
- W4385232289 cites W4367591225 @default.
- W4385232289 doi "https://doi.org/10.1109/eit57321.2023.10187288" @default.
- W4385232289 hasPublicationYear "2023" @default.
- W4385232289 type Work @default.
- W4385232289 citedByCount "0" @default.
- W4385232289 crossrefType "proceedings-article" @default.
- W4385232289 hasAuthorship W4385232289A5021739914 @default.
- W4385232289 hasAuthorship W4385232289A5029997697 @default.
- W4385232289 hasAuthorship W4385232289A5049989175 @default.
- W4385232289 hasAuthorship W4385232289A5080276323 @default.
- W4385232289 hasConcept C108583219 @default.
- W4385232289 hasConcept C119857082 @default.
- W4385232289 hasConcept C126322002 @default.
- W4385232289 hasConcept C150899416 @default.
- W4385232289 hasConcept C153180895 @default.
- W4385232289 hasConcept C154945302 @default.
- W4385232289 hasConcept C2780586474 @default.
- W4385232289 hasConcept C40438245 @default.
- W4385232289 hasConcept C41008148 @default.
- W4385232289 hasConcept C511355011 @default.
- W4385232289 hasConcept C71924100 @default.
- W4385232289 hasConceptScore W4385232289C108583219 @default.
- W4385232289 hasConceptScore W4385232289C119857082 @default.
- W4385232289 hasConceptScore W4385232289C126322002 @default.
- W4385232289 hasConceptScore W4385232289C150899416 @default.
- W4385232289 hasConceptScore W4385232289C153180895 @default.
- W4385232289 hasConceptScore W4385232289C154945302 @default.
- W4385232289 hasConceptScore W4385232289C2780586474 @default.
- W4385232289 hasConceptScore W4385232289C40438245 @default.
- W4385232289 hasConceptScore W4385232289C41008148 @default.
- W4385232289 hasConceptScore W4385232289C511355011 @default.
- W4385232289 hasConceptScore W4385232289C71924100 @default.
- W4385232289 hasLocation W43852322891 @default.
- W4385232289 hasOpenAccess W4385232289 @default.
- W4385232289 hasPrimaryLocation W43852322891 @default.
- W4385232289 hasRelatedWork W2946016983 @default.
- W4385232289 hasRelatedWork W2960456850 @default.
- W4385232289 hasRelatedWork W3021430260 @default.
- W4385232289 hasRelatedWork W4312200629 @default.
- W4385232289 hasRelatedWork W4312685930 @default.
- W4385232289 hasRelatedWork W4317565044 @default.
- W4385232289 hasRelatedWork W4318834068 @default.
- W4385232289 hasRelatedWork W4318957922 @default.
- W4385232289 hasRelatedWork W4380611590 @default.
- W4385232289 hasRelatedWork W4382286161 @default.
- W4385232289 isParatext "false" @default.
- W4385232289 isRetracted "false" @default.
- W4385232289 workType "article" @default.