Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385232672> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4385232672 endingPage "180" @default.
- W4385232672 startingPage "169" @default.
- W4385232672 abstract "Previously, Multi-Layer Perceptrons (MLPs) were primarily used in image classification tasks. The emergence of the MLP-Mixer architecture has demonstrated the continued efficacy of MLPs in other visual tasks. To obtain superior results, it is imperative to have pre-trained weights from large datasets, and the Cross-Location (Token Mix) operation must be adaptively modified to suit the specific task at hand. Inspired by this, we proposed AMG-Mixer, an MLP-based architecture for image segmentation. In particular, recognizing the importance of positional information, we proposed AxialMBconv Token Mix utilizing Axial Attention. Additionally, to reduce Axial Attention’s receptive field constraints, we proposed Multi-scale Multi-axis MLP Gated (MS-MAMG) block which employs Multi-Axis MLP. The proposed AMG-Mixer architecture outperformed State-of-the-Art (SOTA) methods on benchmark datasets including GLaS, Data Science Bowl 2018, and Skin Lesion Segmentation ISIC 2018, even without pre-training. The proposed AMG-Mixer architecture has been confirmed effective and high performing in our study. The code is available at https://github.com/quanglets1fvr/amg_mixer" @default.
- W4385232672 created "2023-07-26" @default.
- W4385232672 creator A5010216091 @default.
- W4385232672 creator A5019897482 @default.
- W4385232672 creator A5020470519 @default.
- W4385232672 creator A5022339185 @default.
- W4385232672 date "2023-01-01" @default.
- W4385232672 modified "2023-10-17" @default.
- W4385232672 title "AMG-Mixer: A Multi-Axis Attention MLP-Mixer Architecture for Biomedical Image Segmentation" @default.
- W4385232672 cites W1901129140 @default.
- W4385232672 cites W2742087205 @default.
- W4385232672 cites W2752782242 @default.
- W4385232672 cites W2963881378 @default.
- W4385232672 cites W2963918968 @default.
- W4385232672 cites W2963946669 @default.
- W4385232672 cites W2999580839 @default.
- W4385232672 cites W3081752372 @default.
- W4385232672 cites W3092622437 @default.
- W4385232672 cites W3097065222 @default.
- W4385232672 cites W3138516171 @default.
- W4385232672 cites W3203480968 @default.
- W4385232672 cites W4226363321 @default.
- W4385232672 cites W4292002664 @default.
- W4385232672 cites W4312678820 @default.
- W4385232672 cites W4312847199 @default.
- W4385232672 cites W4321232185 @default.
- W4385232672 doi "https://doi.org/10.1007/978-3-031-36886-8_14" @default.
- W4385232672 hasPublicationYear "2023" @default.
- W4385232672 type Work @default.
- W4385232672 citedByCount "0" @default.
- W4385232672 crossrefType "book-chapter" @default.
- W4385232672 hasAuthorship W4385232672A5010216091 @default.
- W4385232672 hasAuthorship W4385232672A5019897482 @default.
- W4385232672 hasAuthorship W4385232672A5020470519 @default.
- W4385232672 hasAuthorship W4385232672A5022339185 @default.
- W4385232672 hasConcept C123657996 @default.
- W4385232672 hasConcept C127413603 @default.
- W4385232672 hasConcept C153180895 @default.
- W4385232672 hasConcept C154945302 @default.
- W4385232672 hasConcept C166957645 @default.
- W4385232672 hasConcept C185798385 @default.
- W4385232672 hasConcept C201995342 @default.
- W4385232672 hasConcept C205649164 @default.
- W4385232672 hasConcept C2524010 @default.
- W4385232672 hasConcept C2777210771 @default.
- W4385232672 hasConcept C2780451532 @default.
- W4385232672 hasConcept C31972630 @default.
- W4385232672 hasConcept C33923547 @default.
- W4385232672 hasConcept C41008148 @default.
- W4385232672 hasConcept C50644808 @default.
- W4385232672 hasConcept C58640448 @default.
- W4385232672 hasConcept C60908668 @default.
- W4385232672 hasConcept C89600930 @default.
- W4385232672 hasConceptScore W4385232672C123657996 @default.
- W4385232672 hasConceptScore W4385232672C127413603 @default.
- W4385232672 hasConceptScore W4385232672C153180895 @default.
- W4385232672 hasConceptScore W4385232672C154945302 @default.
- W4385232672 hasConceptScore W4385232672C166957645 @default.
- W4385232672 hasConceptScore W4385232672C185798385 @default.
- W4385232672 hasConceptScore W4385232672C201995342 @default.
- W4385232672 hasConceptScore W4385232672C205649164 @default.
- W4385232672 hasConceptScore W4385232672C2524010 @default.
- W4385232672 hasConceptScore W4385232672C2777210771 @default.
- W4385232672 hasConceptScore W4385232672C2780451532 @default.
- W4385232672 hasConceptScore W4385232672C31972630 @default.
- W4385232672 hasConceptScore W4385232672C33923547 @default.
- W4385232672 hasConceptScore W4385232672C41008148 @default.
- W4385232672 hasConceptScore W4385232672C50644808 @default.
- W4385232672 hasConceptScore W4385232672C58640448 @default.
- W4385232672 hasConceptScore W4385232672C60908668 @default.
- W4385232672 hasConceptScore W4385232672C89600930 @default.
- W4385232672 hasLocation W43852326721 @default.
- W4385232672 hasOpenAccess W4385232672 @default.
- W4385232672 hasPrimaryLocation W43852326721 @default.
- W4385232672 hasRelatedWork W1669643531 @default.
- W4385232672 hasRelatedWork W2005437358 @default.
- W4385232672 hasRelatedWork W2008656436 @default.
- W4385232672 hasRelatedWork W2023558673 @default.
- W4385232672 hasRelatedWork W2039154422 @default.
- W4385232672 hasRelatedWork W2110230079 @default.
- W4385232672 hasRelatedWork W2122581818 @default.
- W4385232672 hasRelatedWork W2134924024 @default.
- W4385232672 hasRelatedWork W2517104666 @default.
- W4385232672 hasRelatedWork W2182382398 @default.
- W4385232672 isParatext "false" @default.
- W4385232672 isRetracted "false" @default.
- W4385232672 workType "book-chapter" @default.