Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385232775> ?p ?o ?g. }
- W4385232775 abstract "Abstract The ability to learn from past experience is an important adaptation, but how natural selection shapes learning is not well understood. Here, we investigate the evolution of associative learning (the association of stimuli with rewards) by a modelling approach that is based on the evolution of neural networks (NNs) underlying learning. Individuals employ their genetically encoded NN to solve a learning task with fitness consequences. NNs inducing more efficient learning have a selective advantage and spread in the population. We show that in a simple learning task, the evolved NNs, even those with very simple architecture, outperform well-studied associative learning rules, such as the Rescorla-Wagner rule. During their evolutionary trajectory, NNs often pass a transitional stage where they functionally resemble Rescorla-Wagner learning, but further evolution shapes them to approximate the theoretically optimal learning rule. Networks with a simple architecture evolve much faster and tend to outperform their more complex counterparts on a shorter-term perspective. Also, on a longer-term perspective network complexity is not a reliable indicator of evolved network performance. These conclusions change somewhat when the learning task is more challenging. Then the performance of many evolved networks is not better than that of the Rescorla-Wagner rule; only some of the more complex networks reach a performance level close to the optimal Bayesian learning rule. In conclusion, we show that the mechanisms underlying learning influence the outcome of evolution. A neural-network approach allows for more flexibility and a wider set of evolutionary outcomes than most analytical studies, while at the same time, it provides a relatively straightforward and intuitive framework to study the learning process." @default.
- W4385232775 created "2023-07-26" @default.
- W4385232775 creator A5022865589 @default.
- W4385232775 creator A5061886482 @default.
- W4385232775 creator A5071117213 @default.
- W4385232775 date "2023-07-25" @default.
- W4385232775 modified "2023-10-16" @default.
- W4385232775 title "Neural network models for the evolution of associative learning" @default.
- W4385232775 cites W1502382881 @default.
- W4385232775 cites W1577932924 @default.
- W4385232775 cites W1991069939 @default.
- W4385232775 cites W1998313484 @default.
- W4385232775 cites W2042233841 @default.
- W4385232775 cites W2046555694 @default.
- W4385232775 cites W2049761256 @default.
- W4385232775 cites W2059096905 @default.
- W4385232775 cites W2063109360 @default.
- W4385232775 cites W2067312754 @default.
- W4385232775 cites W2080683849 @default.
- W4385232775 cites W2082081973 @default.
- W4385232775 cites W2105557836 @default.
- W4385232775 cites W2109489692 @default.
- W4385232775 cites W2121938999 @default.
- W4385232775 cites W2151416715 @default.
- W4385232775 cites W2162225069 @default.
- W4385232775 cites W2168252242 @default.
- W4385232775 cites W2171865010 @default.
- W4385232775 cites W2289553691 @default.
- W4385232775 cites W2549976854 @default.
- W4385232775 cites W2598357633 @default.
- W4385232775 cites W2897785922 @default.
- W4385232775 cites W4211168750 @default.
- W4385232775 cites W4235820678 @default.
- W4385232775 cites W4240343015 @default.
- W4385232775 cites W4245186252 @default.
- W4385232775 doi "https://doi.org/10.1101/2023.07.21.549996" @default.
- W4385232775 hasPublicationYear "2023" @default.
- W4385232775 type Work @default.
- W4385232775 citedByCount "1" @default.
- W4385232775 crossrefType "posted-content" @default.
- W4385232775 hasAuthorship W4385232775A5022865589 @default.
- W4385232775 hasAuthorship W4385232775A5061886482 @default.
- W4385232775 hasAuthorship W4385232775A5071117213 @default.
- W4385232775 hasBestOaLocation W43852327751 @default.
- W4385232775 hasConcept C105795698 @default.
- W4385232775 hasConcept C119857082 @default.
- W4385232775 hasConcept C127413603 @default.
- W4385232775 hasConcept C139807058 @default.
- W4385232775 hasConcept C144024400 @default.
- W4385232775 hasConcept C147168706 @default.
- W4385232775 hasConcept C149923435 @default.
- W4385232775 hasConcept C154945302 @default.
- W4385232775 hasConcept C15744967 @default.
- W4385232775 hasConcept C159423971 @default.
- W4385232775 hasConcept C169760540 @default.
- W4385232775 hasConcept C177264268 @default.
- W4385232775 hasConcept C180747234 @default.
- W4385232775 hasConcept C199360897 @default.
- W4385232775 hasConcept C201995342 @default.
- W4385232775 hasConcept C202444582 @default.
- W4385232775 hasConcept C2779127903 @default.
- W4385232775 hasConcept C2780451532 @default.
- W4385232775 hasConcept C2780598303 @default.
- W4385232775 hasConcept C2908647359 @default.
- W4385232775 hasConcept C2983526489 @default.
- W4385232775 hasConcept C33923547 @default.
- W4385232775 hasConcept C41008148 @default.
- W4385232775 hasConcept C50644808 @default.
- W4385232775 hasConceptScore W4385232775C105795698 @default.
- W4385232775 hasConceptScore W4385232775C119857082 @default.
- W4385232775 hasConceptScore W4385232775C127413603 @default.
- W4385232775 hasConceptScore W4385232775C139807058 @default.
- W4385232775 hasConceptScore W4385232775C144024400 @default.
- W4385232775 hasConceptScore W4385232775C147168706 @default.
- W4385232775 hasConceptScore W4385232775C149923435 @default.
- W4385232775 hasConceptScore W4385232775C154945302 @default.
- W4385232775 hasConceptScore W4385232775C15744967 @default.
- W4385232775 hasConceptScore W4385232775C159423971 @default.
- W4385232775 hasConceptScore W4385232775C169760540 @default.
- W4385232775 hasConceptScore W4385232775C177264268 @default.
- W4385232775 hasConceptScore W4385232775C180747234 @default.
- W4385232775 hasConceptScore W4385232775C199360897 @default.
- W4385232775 hasConceptScore W4385232775C201995342 @default.
- W4385232775 hasConceptScore W4385232775C202444582 @default.
- W4385232775 hasConceptScore W4385232775C2779127903 @default.
- W4385232775 hasConceptScore W4385232775C2780451532 @default.
- W4385232775 hasConceptScore W4385232775C2780598303 @default.
- W4385232775 hasConceptScore W4385232775C2908647359 @default.
- W4385232775 hasConceptScore W4385232775C2983526489 @default.
- W4385232775 hasConceptScore W4385232775C33923547 @default.
- W4385232775 hasConceptScore W4385232775C41008148 @default.
- W4385232775 hasConceptScore W4385232775C50644808 @default.
- W4385232775 hasLocation W43852327751 @default.
- W4385232775 hasOpenAccess W4385232775 @default.
- W4385232775 hasPrimaryLocation W43852327751 @default.
- W4385232775 hasRelatedWork W1618190107 @default.
- W4385232775 hasRelatedWork W2028938801 @default.
- W4385232775 hasRelatedWork W2086279234 @default.
- W4385232775 hasRelatedWork W2115835443 @default.
- W4385232775 hasRelatedWork W2141555669 @default.