Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385233591> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4385233591 endingPage "11" @default.
- W4385233591 startingPage "1" @default.
- W4385233591 abstract "Crowd counting aims to estimate the number, density, and distribution of crowds in an image. The current mainstream approach, based on CNN, has been highly successful. However, CNN is not without its flaws. Its limited receptive field hampers the modeling of global contextual information, and it struggles to effectively handle scale variation and background complexity. In this paper, we propose a Multi-scale Hybrid Attention Network called MHANet to solve crowd counting challenges more effectively. To address the issue of scale variation, we have developed a Multi-scale Aware Module (MAM) that incorporates multiple sets of dilated convolutions with varying dilation rates. The MAM significantly improves the network’s ability to extract information at multiple scales. To tackle the problem of background complexity, we have introduced a Hybrid Attention Module (HAM) that combines spatial attention and channel attention. The HAM effectively directs attention to the crowd region while suppressing background interference, resulting in more accurate counting. MHANet has been extensively experimented on four benchmark datasets and compared against state-of-the-art algorithms. It consistently achieves superior performance in terms of the MAE evaluation metric. MHANet outperforms the current state-of-the-art methods by margins of 1.9%, 5.4%, 0.4%, and 0.8% on the ShanghaiTech Part_A, ShanghaiTech Part_B, UCF-QNRF, and UCF_CC_50 datasets, respectively. Furthermore, a series of ablation experiments targeting MAM and HAM were conducted in this paper, and the experimental results fully demonstrate that MAM and HAM can effectively address the challenges of scale variation and background complexity, ultimately enhancing the accuracy and robustness of the network." @default.
- W4385233591 created "2023-07-26" @default.
- W4385233591 creator A5006111469 @default.
- W4385233591 creator A5009404767 @default.
- W4385233591 creator A5022293618 @default.
- W4385233591 creator A5083571765 @default.
- W4385233591 creator A5087656443 @default.
- W4385233591 date "2023-07-22" @default.
- W4385233591 modified "2023-10-18" @default.
- W4385233591 title "MHANet: Multi-scale hybrid attention network for crowd counting" @default.
- W4385233591 cites W2113146821 @default.
- W4385233591 cites W2997138427 @default.
- W4385233591 cites W3081099313 @default.
- W4385233591 cites W3102632104 @default.
- W4385233591 cites W3175725565 @default.
- W4385233591 cites W4225264236 @default.
- W4385233591 doi "https://doi.org/10.3233/jifs-232065" @default.
- W4385233591 hasPublicationYear "2023" @default.
- W4385233591 type Work @default.
- W4385233591 citedByCount "0" @default.
- W4385233591 crossrefType "journal-article" @default.
- W4385233591 hasAuthorship W4385233591A5006111469 @default.
- W4385233591 hasAuthorship W4385233591A5009404767 @default.
- W4385233591 hasAuthorship W4385233591A5022293618 @default.
- W4385233591 hasAuthorship W4385233591A5083571765 @default.
- W4385233591 hasAuthorship W4385233591A5087656443 @default.
- W4385233591 hasConcept C119857082 @default.
- W4385233591 hasConcept C121332964 @default.
- W4385233591 hasConcept C124101348 @default.
- W4385233591 hasConcept C13280743 @default.
- W4385233591 hasConcept C153180895 @default.
- W4385233591 hasConcept C154945302 @default.
- W4385233591 hasConcept C162324750 @default.
- W4385233591 hasConcept C176217482 @default.
- W4385233591 hasConcept C185798385 @default.
- W4385233591 hasConcept C205649164 @default.
- W4385233591 hasConcept C21547014 @default.
- W4385233591 hasConcept C2777852691 @default.
- W4385233591 hasConcept C2778334786 @default.
- W4385233591 hasConcept C2778755073 @default.
- W4385233591 hasConcept C38652104 @default.
- W4385233591 hasConcept C41008148 @default.
- W4385233591 hasConcept C44870925 @default.
- W4385233591 hasConcept C62520636 @default.
- W4385233591 hasConceptScore W4385233591C119857082 @default.
- W4385233591 hasConceptScore W4385233591C121332964 @default.
- W4385233591 hasConceptScore W4385233591C124101348 @default.
- W4385233591 hasConceptScore W4385233591C13280743 @default.
- W4385233591 hasConceptScore W4385233591C153180895 @default.
- W4385233591 hasConceptScore W4385233591C154945302 @default.
- W4385233591 hasConceptScore W4385233591C162324750 @default.
- W4385233591 hasConceptScore W4385233591C176217482 @default.
- W4385233591 hasConceptScore W4385233591C185798385 @default.
- W4385233591 hasConceptScore W4385233591C205649164 @default.
- W4385233591 hasConceptScore W4385233591C21547014 @default.
- W4385233591 hasConceptScore W4385233591C2777852691 @default.
- W4385233591 hasConceptScore W4385233591C2778334786 @default.
- W4385233591 hasConceptScore W4385233591C2778755073 @default.
- W4385233591 hasConceptScore W4385233591C38652104 @default.
- W4385233591 hasConceptScore W4385233591C41008148 @default.
- W4385233591 hasConceptScore W4385233591C44870925 @default.
- W4385233591 hasConceptScore W4385233591C62520636 @default.
- W4385233591 hasLocation W43852335911 @default.
- W4385233591 hasOpenAccess W4385233591 @default.
- W4385233591 hasPrimaryLocation W43852335911 @default.
- W4385233591 hasRelatedWork W112744582 @default.
- W4385233591 hasRelatedWork W1485630101 @default.
- W4385233591 hasRelatedWork W2070338563 @default.
- W4385233591 hasRelatedWork W2118451750 @default.
- W4385233591 hasRelatedWork W2498017833 @default.
- W4385233591 hasRelatedWork W2961085424 @default.
- W4385233591 hasRelatedWork W2978794003 @default.
- W4385233591 hasRelatedWork W3007208975 @default.
- W4385233591 hasRelatedWork W3109709593 @default.
- W4385233591 hasRelatedWork W3188648403 @default.
- W4385233591 isParatext "false" @default.
- W4385233591 isRetracted "false" @default.
- W4385233591 workType "article" @default.