Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385235004> ?p ?o ?g. }
- W4385235004 endingPage "4206" @default.
- W4385235004 startingPage "4193" @default.
- W4385235004 abstract "Forecasting recruitments is a key component of the monitoring phase of multicenter studies. One of the most popular techniques in this field is the Poisson-Gamma recruitment model, a Bayesian technique built on a doubly stochastic Poisson process. This approach is based on the modeling of enrollments as a Poisson process where the recruitment rates are assumed to be constant over time and to follow a common Gamma prior distribution. However, the constant-rate assumption is a restrictive limitation that is rarely appropriate for applications in real studies. In this paper, we illustrate a flexible generalization of this methodology which allows the enrollment rates to vary over time by modeling them through B-splines. We show the suitability of this approach for a wide range of recruitment behaviors in a simulation study and by estimating the recruitment progression of the Canadian Co-infection Cohort." @default.
- W4385235004 created "2023-07-26" @default.
- W4385235004 creator A5015893514 @default.
- W4385235004 creator A5021869883 @default.
- W4385235004 creator A5048550846 @default.
- W4385235004 creator A5067451399 @default.
- W4385235004 creator A5085069223 @default.
- W4385235004 date "2023-07-25" @default.
- W4385235004 modified "2023-10-17" @default.
- W4385235004 title "A time‐dependent Poisson‐Gamma model for recruitment forecasting in multicenter studies" @default.
- W4385235004 cites W1584247201 @default.
- W4385235004 cites W2007777233 @default.
- W4385235004 cites W2025555870 @default.
- W4385235004 cites W2065828549 @default.
- W4385235004 cites W2069375751 @default.
- W4385235004 cites W2090045350 @default.
- W4385235004 cites W2111296298 @default.
- W4385235004 cites W2126216797 @default.
- W4385235004 cites W2128193432 @default.
- W4385235004 cites W2133292659 @default.
- W4385235004 cites W2149642663 @default.
- W4385235004 cites W2162870748 @default.
- W4385235004 cites W2163373419 @default.
- W4385235004 cites W2164777003 @default.
- W4385235004 cites W2168175751 @default.
- W4385235004 cites W2415712401 @default.
- W4385235004 cites W2571435583 @default.
- W4385235004 cites W2603257905 @default.
- W4385235004 cites W2626857857 @default.
- W4385235004 cites W2900192357 @default.
- W4385235004 cites W3089229608 @default.
- W4385235004 cites W3127156566 @default.
- W4385235004 doi "https://doi.org/10.1002/sim.9855" @default.
- W4385235004 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37491664" @default.
- W4385235004 hasPublicationYear "2023" @default.
- W4385235004 type Work @default.
- W4385235004 citedByCount "0" @default.
- W4385235004 crossrefType "journal-article" @default.
- W4385235004 hasAuthorship W4385235004A5015893514 @default.
- W4385235004 hasAuthorship W4385235004A5021869883 @default.
- W4385235004 hasAuthorship W4385235004A5048550846 @default.
- W4385235004 hasAuthorship W4385235004A5067451399 @default.
- W4385235004 hasAuthorship W4385235004A5085069223 @default.
- W4385235004 hasBestOaLocation W43852350041 @default.
- W4385235004 hasConcept C100906024 @default.
- W4385235004 hasConcept C105795698 @default.
- W4385235004 hasConcept C107673813 @default.
- W4385235004 hasConcept C127413603 @default.
- W4385235004 hasConcept C134306372 @default.
- W4385235004 hasConcept C144024400 @default.
- W4385235004 hasConcept C146978453 @default.
- W4385235004 hasConcept C149717495 @default.
- W4385235004 hasConcept C149782125 @default.
- W4385235004 hasConcept C149923435 @default.
- W4385235004 hasConcept C166144826 @default.
- W4385235004 hasConcept C177148314 @default.
- W4385235004 hasConcept C199360897 @default.
- W4385235004 hasConcept C204323151 @default.
- W4385235004 hasConcept C2777027219 @default.
- W4385235004 hasConcept C2908647359 @default.
- W4385235004 hasConcept C33643355 @default.
- W4385235004 hasConcept C33923547 @default.
- W4385235004 hasConcept C41008148 @default.
- W4385235004 hasConcept C73269764 @default.
- W4385235004 hasConcept C79495835 @default.
- W4385235004 hasConceptScore W4385235004C100906024 @default.
- W4385235004 hasConceptScore W4385235004C105795698 @default.
- W4385235004 hasConceptScore W4385235004C107673813 @default.
- W4385235004 hasConceptScore W4385235004C127413603 @default.
- W4385235004 hasConceptScore W4385235004C134306372 @default.
- W4385235004 hasConceptScore W4385235004C144024400 @default.
- W4385235004 hasConceptScore W4385235004C146978453 @default.
- W4385235004 hasConceptScore W4385235004C149717495 @default.
- W4385235004 hasConceptScore W4385235004C149782125 @default.
- W4385235004 hasConceptScore W4385235004C149923435 @default.
- W4385235004 hasConceptScore W4385235004C166144826 @default.
- W4385235004 hasConceptScore W4385235004C177148314 @default.
- W4385235004 hasConceptScore W4385235004C199360897 @default.
- W4385235004 hasConceptScore W4385235004C204323151 @default.
- W4385235004 hasConceptScore W4385235004C2777027219 @default.
- W4385235004 hasConceptScore W4385235004C2908647359 @default.
- W4385235004 hasConceptScore W4385235004C33643355 @default.
- W4385235004 hasConceptScore W4385235004C33923547 @default.
- W4385235004 hasConceptScore W4385235004C41008148 @default.
- W4385235004 hasConceptScore W4385235004C73269764 @default.
- W4385235004 hasConceptScore W4385235004C79495835 @default.
- W4385235004 hasFunder F4320334593 @default.
- W4385235004 hasIssue "23" @default.
- W4385235004 hasLocation W43852350041 @default.
- W4385235004 hasLocation W43852350042 @default.
- W4385235004 hasLocation W43852350043 @default.
- W4385235004 hasOpenAccess W4385235004 @default.
- W4385235004 hasPrimaryLocation W43852350041 @default.
- W4385235004 hasRelatedWork W157392704 @default.
- W4385235004 hasRelatedWork W1578743158 @default.
- W4385235004 hasRelatedWork W1849881158 @default.
- W4385235004 hasRelatedWork W2319668974 @default.
- W4385235004 hasRelatedWork W2760114301 @default.