Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385237148> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4385237148 abstract "The smart grid is a technology that was created today to address the problem of maintaining significant quantities of energy consumption with the help of emerging nations. Smart cities, like the smart grid, have an energy infrastructure that is arguably the single most important feature in any city. Smart cities depend on a smart grid to ensure resilient delivery of energy to supply their many functions, including those responsible for public safety and the public. It consists of smart distribution boards and circuit breakers integrated with home control and demand response, where load control switches and smart appliances are located. The smart grid vision is supported by the use of information and communication technology. In this article, the capabilities and technologies of the smart grid are compared across several machine learning and deep learning technologies. The deep learning (ANN) methodology was used to find the best approaches for forecasting grid stability. Various supervised machine learning classifiers are utilized to estimate accuracy, AUC-ROC, and other metrics. According to the investigation, deep learning-based estimations were actually more accurate than supervised learning-based ones. As a result, accurate power consumption estimation makes sure the entire chain runs smoothly." @default.
- W4385237148 created "2023-07-26" @default.
- W4385237148 creator A5027892604 @default.
- W4385237148 creator A5054111498 @default.
- W4385237148 creator A5090920177 @default.
- W4385237148 date "2022-12-26" @default.
- W4385237148 modified "2023-09-27" @default.
- W4385237148 title "Prediction of Power Consumption in Smart Grid: A Reliable Path to a Smart City Based on Various Machine Learning Models" @default.
- W4385237148 cites W1979579834 @default.
- W4385237148 cites W2113243345 @default.
- W4385237148 cites W2782902016 @default.
- W4385237148 cites W2907560147 @default.
- W4385237148 cites W3003484286 @default.
- W4385237148 cites W3023328046 @default.
- W4385237148 cites W3127211569 @default.
- W4385237148 cites W3152694090 @default.
- W4385237148 cites W3154257404 @default.
- W4385237148 doi "https://doi.org/10.1109/icrpset57982.2022.10188543" @default.
- W4385237148 hasPublicationYear "2022" @default.
- W4385237148 type Work @default.
- W4385237148 citedByCount "0" @default.
- W4385237148 crossrefType "proceedings-article" @default.
- W4385237148 hasAuthorship W4385237148A5027892604 @default.
- W4385237148 hasAuthorship W4385237148A5054111498 @default.
- W4385237148 hasAuthorship W4385237148A5090920177 @default.
- W4385237148 hasConcept C10558101 @default.
- W4385237148 hasConcept C108583219 @default.
- W4385237148 hasConcept C119599485 @default.
- W4385237148 hasConcept C119857082 @default.
- W4385237148 hasConcept C127413603 @default.
- W4385237148 hasConcept C154945302 @default.
- W4385237148 hasConcept C187691185 @default.
- W4385237148 hasConcept C206658404 @default.
- W4385237148 hasConcept C2524010 @default.
- W4385237148 hasConcept C2779438525 @default.
- W4385237148 hasConcept C2780165032 @default.
- W4385237148 hasConcept C33923547 @default.
- W4385237148 hasConcept C41008148 @default.
- W4385237148 hasConcept C79403827 @default.
- W4385237148 hasConceptScore W4385237148C10558101 @default.
- W4385237148 hasConceptScore W4385237148C108583219 @default.
- W4385237148 hasConceptScore W4385237148C119599485 @default.
- W4385237148 hasConceptScore W4385237148C119857082 @default.
- W4385237148 hasConceptScore W4385237148C127413603 @default.
- W4385237148 hasConceptScore W4385237148C154945302 @default.
- W4385237148 hasConceptScore W4385237148C187691185 @default.
- W4385237148 hasConceptScore W4385237148C206658404 @default.
- W4385237148 hasConceptScore W4385237148C2524010 @default.
- W4385237148 hasConceptScore W4385237148C2779438525 @default.
- W4385237148 hasConceptScore W4385237148C2780165032 @default.
- W4385237148 hasConceptScore W4385237148C33923547 @default.
- W4385237148 hasConceptScore W4385237148C41008148 @default.
- W4385237148 hasConceptScore W4385237148C79403827 @default.
- W4385237148 hasLocation W43852371481 @default.
- W4385237148 hasOpenAccess W4385237148 @default.
- W4385237148 hasPrimaryLocation W43852371481 @default.
- W4385237148 hasRelatedWork W3014300295 @default.
- W4385237148 hasRelatedWork W3164822677 @default.
- W4385237148 hasRelatedWork W4223943233 @default.
- W4385237148 hasRelatedWork W4225161397 @default.
- W4385237148 hasRelatedWork W4309045103 @default.
- W4385237148 hasRelatedWork W4312200629 @default.
- W4385237148 hasRelatedWork W4360585206 @default.
- W4385237148 hasRelatedWork W4364306694 @default.
- W4385237148 hasRelatedWork W4380075502 @default.
- W4385237148 hasRelatedWork W4380086463 @default.
- W4385237148 isParatext "false" @default.
- W4385237148 isRetracted "false" @default.
- W4385237148 workType "article" @default.