Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385245887> ?p ?o ?g. }
- W4385245887 endingPage "7342" @default.
- W4385245887 startingPage "7327" @default.
- W4385245887 abstract "Fusing features from different feature descriptors or different convolutional layers can improve the understanding of scene and enhance the classification accuracy. In this article, we propose a hierarchical deep texture feature fusion network, abbreviated as HDTFF-Net, aiming to improve the classification accuracy of high-resolution remote sensing scene classification. The proposed HDTFF-Net can effectively combine the shallow texture information from manual features and the deep texture information by convolutional neural networks (CNNs). First, for deeply excavating the multiscale and multidirectional shallow texture features in images, an improved Wavelet feature extraction module and a Gabor feature extraction module are designed by fully fusing the structural features into the backbone neural network. Then, to make the output texture features more discriminative and interpretative, we incorporate the above texture feature extraction modules into traditional CNNs (Tra-CNNs), and design two improved deep networks, namely Wave-CNN and Gabor-CNN. Finally, according to the Dempster-Shafer evidence theory, the designed Wave-CNN and Gabor-CNN are fused with the Tra-CNN by a decision-level fusion strategy, which can effectively capture the deep texture features by different feature descriptors and improve the classification performance. Experiments on high-resolution remote sensing images demonstrate the effectiveness of the proposed HDTFF-Net, and verify that it can greatly improve the classification performance." @default.
- W4385245887 created "2023-07-26" @default.
- W4385245887 creator A5010555402 @default.
- W4385245887 creator A5019222199 @default.
- W4385245887 creator A5080100316 @default.
- W4385245887 creator A5080268234 @default.
- W4385245887 creator A5088683171 @default.
- W4385245887 date "2023-01-01" @default.
- W4385245887 modified "2023-10-16" @default.
- W4385245887 title "HDTFF-Net: Hierarchical Deep Texture Features Fusion Network for High-Resolution Remote Sensing Scene Classification" @default.
- W4385245887 cites W2024815898 @default.
- W4385245887 cites W2060994933 @default.
- W4385245887 cites W2064624052 @default.
- W4385245887 cites W2096127742 @default.
- W4385245887 cites W2114718886 @default.
- W4385245887 cites W2161969291 @default.
- W4385245887 cites W2163352848 @default.
- W4385245887 cites W2179290474 @default.
- W4385245887 cites W2579933644 @default.
- W4385245887 cites W2610691757 @default.
- W4385245887 cites W2626107033 @default.
- W4385245887 cites W2715220489 @default.
- W4385245887 cites W2727875856 @default.
- W4385245887 cites W2787070260 @default.
- W4385245887 cites W2890833618 @default.
- W4385245887 cites W2940939359 @default.
- W4385245887 cites W2962217138 @default.
- W4385245887 cites W2963446712 @default.
- W4385245887 cites W2974373385 @default.
- W4385245887 cites W2986888765 @default.
- W4385245887 cites W2998002262 @default.
- W4385245887 cites W3004916592 @default.
- W4385245887 cites W3006039757 @default.
- W4385245887 cites W3080321686 @default.
- W4385245887 cites W3080919303 @default.
- W4385245887 cites W3086451439 @default.
- W4385245887 cites W3103856189 @default.
- W4385245887 cites W3105577662 @default.
- W4385245887 cites W3119729445 @default.
- W4385245887 cites W3120080208 @default.
- W4385245887 cites W3121292405 @default.
- W4385245887 cites W3156910157 @default.
- W4385245887 cites W3159088339 @default.
- W4385245887 cites W3168224088 @default.
- W4385245887 cites W3189867217 @default.
- W4385245887 cites W3196798006 @default.
- W4385245887 cites W3210421180 @default.
- W4385245887 cites W3213288046 @default.
- W4385245887 cites W4200571910 @default.
- W4385245887 cites W4210730494 @default.
- W4385245887 cites W4224325241 @default.
- W4385245887 cites W4226060438 @default.
- W4385245887 cites W4226164976 @default.
- W4385245887 cites W4280490589 @default.
- W4385245887 cites W4283816058 @default.
- W4385245887 cites W4289731322 @default.
- W4385245887 cites W4291915108 @default.
- W4385245887 cites W4294982860 @default.
- W4385245887 cites W4295934974 @default.
- W4385245887 cites W4296079303 @default.
- W4385245887 cites W4296363035 @default.
- W4385245887 cites W4312600819 @default.
- W4385245887 cites W4366772011 @default.
- W4385245887 cites W4376481113 @default.
- W4385245887 doi "https://doi.org/10.1109/jstars.2023.3298492" @default.
- W4385245887 hasPublicationYear "2023" @default.
- W4385245887 type Work @default.
- W4385245887 citedByCount "0" @default.
- W4385245887 crossrefType "journal-article" @default.
- W4385245887 hasAuthorship W4385245887A5010555402 @default.
- W4385245887 hasAuthorship W4385245887A5019222199 @default.
- W4385245887 hasAuthorship W4385245887A5080100316 @default.
- W4385245887 hasAuthorship W4385245887A5080268234 @default.
- W4385245887 hasAuthorship W4385245887A5088683171 @default.
- W4385245887 hasBestOaLocation W43852458871 @default.
- W4385245887 hasConcept C108583219 @default.
- W4385245887 hasConcept C115961682 @default.
- W4385245887 hasConcept C136902061 @default.
- W4385245887 hasConcept C138885662 @default.
- W4385245887 hasConcept C153180895 @default.
- W4385245887 hasConcept C154945302 @default.
- W4385245887 hasConcept C196216189 @default.
- W4385245887 hasConcept C2776401178 @default.
- W4385245887 hasConcept C2781195486 @default.
- W4385245887 hasConcept C31972630 @default.
- W4385245887 hasConcept C41008148 @default.
- W4385245887 hasConcept C41895202 @default.
- W4385245887 hasConcept C46286280 @default.
- W4385245887 hasConcept C47432892 @default.
- W4385245887 hasConcept C52622490 @default.
- W4385245887 hasConcept C63099799 @default.
- W4385245887 hasConcept C75294576 @default.
- W4385245887 hasConcept C81363708 @default.
- W4385245887 hasConcept C9417928 @default.
- W4385245887 hasConcept C97931131 @default.
- W4385245887 hasConceptScore W4385245887C108583219 @default.
- W4385245887 hasConceptScore W4385245887C115961682 @default.
- W4385245887 hasConceptScore W4385245887C136902061 @default.