Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385246502> ?p ?o ?g. }
- W4385246502 endingPage "11640" @default.
- W4385246502 startingPage "11632" @default.
- W4385246502 abstract "We report on the first successful attempt to produce a silica/polymer composite with retained C18 silica sorptive properties that can be reliably printed using three-dimensional (3D) FDM printing. A 3D printer provides an exceptional tool for producing complex objects in an easy and inexpensive manner and satisfying the current custom demand of research. Fused deposition modeling (FDM) is the most popular 3D-printing technique based on the extrusion of a thermoplastic material. The lack of appropriate materials limits the development of advanced applications involving directly 3D-printed devices with intrinsic chemical activity. Progress in sample preparation, especially for complex sample matrices and when mass spectrometry is favorable, remains a vital research field. Silica particles, for example, which are commonly used for extraction, cannot be directly extruded and are not readily workable in a powder form. The availability of composite materials containing a thermoplastic polymer matrix and dispersed silica particles would accelerate research in this area. This paper describes how to prepare a polypropylene (PP)/acrylonitrile-butadiene-styrene (ABS)/C18-functionalized silica composite that can be processed by FDM 3D printing. We present a method for producing the filament as well as a procedure to remove ABS by acetone rinsing (to activate the material). The result is an activated 3D-printed object with a porous structure that allows access to silica particles while maintaining macroscopic size and shape. The 3D-printed device is intended for use in a solid-phase microextraction (SPME) procedure. The proposed composite's effectiveness is demonstrated for the microextraction of glimepiride, imipramine, and carbamazepine. The complex honeycomb geometry of the sorbent has shown to be superior to the simple tubular sorbent, which proves the benefits of 3D printing. The 3D-printed sorbent's shape and microextraction parameters were fine-tuned to provide satisfactory recoveries (33-47%) and high precision (2-6%), especially for carbamazepine microextraction." @default.
- W4385246502 created "2023-07-26" @default.
- W4385246502 creator A5002909012 @default.
- W4385246502 creator A5006251380 @default.
- W4385246502 creator A5010645775 @default.
- W4385246502 creator A5011928943 @default.
- W4385246502 creator A5012994322 @default.
- W4385246502 creator A5020755181 @default.
- W4385246502 creator A5044014756 @default.
- W4385246502 creator A5072132960 @default.
- W4385246502 creator A5075064110 @default.
- W4385246502 creator A5091854701 @default.
- W4385246502 date "2023-07-25" @default.
- W4385246502 modified "2023-10-18" @default.
- W4385246502 title "Development of a 3D-Printable, Porous, and Chemically Active Material Filled with Silica Particles and its Application to the Fabrication of a Microextraction Device" @default.
- W4385246502 cites W1962135887 @default.
- W4385246502 cites W1964627739 @default.
- W4385246502 cites W2030431073 @default.
- W4385246502 cites W2113220543 @default.
- W4385246502 cites W2339082243 @default.
- W4385246502 cites W2342593170 @default.
- W4385246502 cites W2553221934 @default.
- W4385246502 cites W2614503001 @default.
- W4385246502 cites W2743777320 @default.
- W4385246502 cites W2766473392 @default.
- W4385246502 cites W2768242625 @default.
- W4385246502 cites W2770044579 @default.
- W4385246502 cites W2786317544 @default.
- W4385246502 cites W2794196467 @default.
- W4385246502 cites W2795864942 @default.
- W4385246502 cites W2805163993 @default.
- W4385246502 cites W2893026955 @default.
- W4385246502 cites W2905431490 @default.
- W4385246502 cites W2909696243 @default.
- W4385246502 cites W2914858720 @default.
- W4385246502 cites W2915325269 @default.
- W4385246502 cites W2941908843 @default.
- W4385246502 cites W2956108599 @default.
- W4385246502 cites W2963964298 @default.
- W4385246502 cites W2968582718 @default.
- W4385246502 cites W2984028075 @default.
- W4385246502 cites W3003699135 @default.
- W4385246502 cites W3004171494 @default.
- W4385246502 cites W3010601952 @default.
- W4385246502 cites W3018084364 @default.
- W4385246502 cites W3030591966 @default.
- W4385246502 cites W3036725391 @default.
- W4385246502 cites W3038399533 @default.
- W4385246502 cites W3041996214 @default.
- W4385246502 cites W3076893969 @default.
- W4385246502 cites W3112850117 @default.
- W4385246502 cites W3157253826 @default.
- W4385246502 cites W3209627406 @default.
- W4385246502 cites W827372051 @default.
- W4385246502 doi "https://doi.org/10.1021/acs.analchem.3c01263" @default.
- W4385246502 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37490645" @default.
- W4385246502 hasPublicationYear "2023" @default.
- W4385246502 type Work @default.
- W4385246502 citedByCount "0" @default.
- W4385246502 crossrefType "journal-article" @default.
- W4385246502 hasAuthorship W4385246502A5002909012 @default.
- W4385246502 hasAuthorship W4385246502A5006251380 @default.
- W4385246502 hasAuthorship W4385246502A5010645775 @default.
- W4385246502 hasAuthorship W4385246502A5011928943 @default.
- W4385246502 hasAuthorship W4385246502A5012994322 @default.
- W4385246502 hasAuthorship W4385246502A5020755181 @default.
- W4385246502 hasAuthorship W4385246502A5044014756 @default.
- W4385246502 hasAuthorship W4385246502A5072132960 @default.
- W4385246502 hasAuthorship W4385246502A5075064110 @default.
- W4385246502 hasAuthorship W4385246502A5091854701 @default.
- W4385246502 hasConcept C104779481 @default.
- W4385246502 hasConcept C136525101 @default.
- W4385246502 hasConcept C142724271 @default.
- W4385246502 hasConcept C159985019 @default.
- W4385246502 hasConcept C162356407 @default.
- W4385246502 hasConcept C171250308 @default.
- W4385246502 hasConcept C185592680 @default.
- W4385246502 hasConcept C192562407 @default.
- W4385246502 hasConcept C204787440 @default.
- W4385246502 hasConcept C205345274 @default.
- W4385246502 hasConcept C2777510241 @default.
- W4385246502 hasConcept C2777973245 @default.
- W4385246502 hasConcept C2778533135 @default.
- W4385246502 hasConcept C2778576202 @default.
- W4385246502 hasConcept C2778958987 @default.
- W4385246502 hasConcept C2780329122 @default.
- W4385246502 hasConcept C2781247691 @default.
- W4385246502 hasConcept C2781431410 @default.
- W4385246502 hasConcept C43617362 @default.
- W4385246502 hasConcept C521977710 @default.
- W4385246502 hasConcept C524769229 @default.
- W4385246502 hasConcept C6648577 @default.
- W4385246502 hasConcept C71924100 @default.
- W4385246502 hasConceptScore W4385246502C104779481 @default.
- W4385246502 hasConceptScore W4385246502C136525101 @default.
- W4385246502 hasConceptScore W4385246502C142724271 @default.
- W4385246502 hasConceptScore W4385246502C159985019 @default.
- W4385246502 hasConceptScore W4385246502C162356407 @default.