Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385246787> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4385246787 endingPage "110005" @default.
- W4385246787 startingPage "110005" @default.
- W4385246787 abstract "Spent nuclear fuel represents the majority of materials placed under nuclear safeguards today and it requires to be inspected and verified regularly to promptly detect any illegal diversion. Research is ongoing both on the development of non-destructive assay instruments and methods for data analysis in order to enhance the verification accuracy and reduce the inspection time. In this paper, two models based on Artificial Neural Networks (ANNs) are studied to process measurements from the Partial Defect Tester (PDET) in spent fuel assemblies of Pressurized Water Reactors (PWRs), and thus to identify at different levels of detail whether nuclear fuel has been replaced with dummy pins or not. The first model provides an estimation of the percentage of replaced fuel pins within the inspected fuel assembly, while the second model determines the exact configuration of the replaced fuel pins. The two models are trained and tested using a dataset of Monte-Carlo simulated PDET responses for intact spent PWR fuel assemblies and a variety of hypothetical diversion scenarios. The first model classifies fuel assemblies according to the percentage of diverted fuel with a high accuracy (96.5%). The second model reconstructs the correct configuration for 57.5% of the fuel assemblies available in the dataset and still retrieves meaningful information of the diversion pattern in many of the misclassified cases." @default.
- W4385246787 created "2023-07-26" @default.
- W4385246787 creator A5009088963 @default.
- W4385246787 creator A5024018097 @default.
- W4385246787 creator A5035463459 @default.
- W4385246787 creator A5047106810 @default.
- W4385246787 creator A5051586151 @default.
- W4385246787 date "2023-12-01" @default.
- W4385246787 modified "2023-10-18" @default.
- W4385246787 title "Identification of diversions in spent PWR fuel assemblies by PDET signatures using Artificial Neural Networks (ANNs)" @default.
- W4385246787 cites W2253049748 @default.
- W4385246787 cites W2345639313 @default.
- W4385246787 cites W2791930672 @default.
- W4385246787 cites W3015406232 @default.
- W4385246787 cites W3022427704 @default.
- W4385246787 cites W3040864006 @default.
- W4385246787 cites W3041935039 @default.
- W4385246787 doi "https://doi.org/10.1016/j.anucene.2023.110005" @default.
- W4385246787 hasPublicationYear "2023" @default.
- W4385246787 type Work @default.
- W4385246787 citedByCount "0" @default.
- W4385246787 crossrefType "journal-article" @default.
- W4385246787 hasAuthorship W4385246787A5009088963 @default.
- W4385246787 hasAuthorship W4385246787A5024018097 @default.
- W4385246787 hasAuthorship W4385246787A5035463459 @default.
- W4385246787 hasAuthorship W4385246787A5047106810 @default.
- W4385246787 hasAuthorship W4385246787A5051586151 @default.
- W4385246787 hasBestOaLocation W43852467871 @default.
- W4385246787 hasConcept C105795698 @default.
- W4385246787 hasConcept C111919701 @default.
- W4385246787 hasConcept C116834253 @default.
- W4385246787 hasConcept C116915560 @default.
- W4385246787 hasConcept C127413603 @default.
- W4385246787 hasConcept C154945302 @default.
- W4385246787 hasConcept C19499675 @default.
- W4385246787 hasConcept C2779819667 @default.
- W4385246787 hasConcept C2780406361 @default.
- W4385246787 hasConcept C33923547 @default.
- W4385246787 hasConcept C39432304 @default.
- W4385246787 hasConcept C41008148 @default.
- W4385246787 hasConcept C50644808 @default.
- W4385246787 hasConcept C59822182 @default.
- W4385246787 hasConcept C7083945 @default.
- W4385246787 hasConcept C86803240 @default.
- W4385246787 hasConcept C98045186 @default.
- W4385246787 hasConceptScore W4385246787C105795698 @default.
- W4385246787 hasConceptScore W4385246787C111919701 @default.
- W4385246787 hasConceptScore W4385246787C116834253 @default.
- W4385246787 hasConceptScore W4385246787C116915560 @default.
- W4385246787 hasConceptScore W4385246787C127413603 @default.
- W4385246787 hasConceptScore W4385246787C154945302 @default.
- W4385246787 hasConceptScore W4385246787C19499675 @default.
- W4385246787 hasConceptScore W4385246787C2779819667 @default.
- W4385246787 hasConceptScore W4385246787C2780406361 @default.
- W4385246787 hasConceptScore W4385246787C33923547 @default.
- W4385246787 hasConceptScore W4385246787C39432304 @default.
- W4385246787 hasConceptScore W4385246787C41008148 @default.
- W4385246787 hasConceptScore W4385246787C50644808 @default.
- W4385246787 hasConceptScore W4385246787C59822182 @default.
- W4385246787 hasConceptScore W4385246787C7083945 @default.
- W4385246787 hasConceptScore W4385246787C86803240 @default.
- W4385246787 hasConceptScore W4385246787C98045186 @default.
- W4385246787 hasFunder F4320327265 @default.
- W4385246787 hasLocation W43852467871 @default.
- W4385246787 hasLocation W43852467872 @default.
- W4385246787 hasOpenAccess W4385246787 @default.
- W4385246787 hasPrimaryLocation W43852467871 @default.
- W4385246787 hasRelatedWork W1489651434 @default.
- W4385246787 hasRelatedWork W1578969196 @default.
- W4385246787 hasRelatedWork W1985648548 @default.
- W4385246787 hasRelatedWork W2011951394 @default.
- W4385246787 hasRelatedWork W2032647670 @default.
- W4385246787 hasRelatedWork W2036061595 @default.
- W4385246787 hasRelatedWork W2217449259 @default.
- W4385246787 hasRelatedWork W2346191850 @default.
- W4385246787 hasRelatedWork W2767922023 @default.
- W4385246787 hasRelatedWork W3160702238 @default.
- W4385246787 hasVolume "193" @default.
- W4385246787 isParatext "false" @default.
- W4385246787 isRetracted "false" @default.
- W4385246787 workType "article" @default.