Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385247161> ?p ?o ?g. }
- W4385247161 abstract "Abstract Purpose To compare Magnetic resonance imaging (MRI) radiomics signatures and traditional MRI model for the preoperative prediction of bladder cancer (BCa) grade. Methods This retrospective study included 255 consecutive patients with pathologically confirmed 113 low-grade and 142 high-grade BCa who underwent preoperative MRI, including T 2 -weighted imaging (T 2 WI) and apparent diffusion coefficient (ADC). The traditional MRI nomogram model was developed using univariate and multivariate logistic regression by the mean apparent diffusion coefficient (mADC), vesical imaging reporting and data system (VI-RADS) scoring, tumor size and number of tumors. Volumes of interest were manually drawn on T 2 WI and ADC maps by two radiologists. Using ANOVA, correlation and LASSO methods to select features. Then, a logistic regression (LR) classifier was used to develop the radiomics signatures in the training set and assessed in the validation set. Receiver operating characteristic (ROC) analysis was used to compare the diagnostic abilities of the radiomics and traditional MRI models by the DeLong test. Finally, decision curve analysis (DCA) was performed by estimating the clinical usefulness of the two models in both the training and validation sets. Results The areas under the ROC curves (AUCs) of the traditional MRI model were 0.841 in the training cohort and 0.806 in the validation cohort. The AUCs of the three groups of radiomics model [ADC, T 2 WI, bi-parametric-MRI(bp-MRI, ADC and T 2 WI)]-based logistic regression analysis algorithms were 0.888, 0.875 and 0.899 in the training cohort and 0.863, 0.805 and 0.867 in the validation cohort, respectively. The combined radiomics model achieved higher AUCs than the traditional MRI model and was compared using the DeLong test ( P = 0.026 and 0.023 in the training and validation cohorts, respectively). DCA indicated that the radiomics model had higher net benefits than the traditional MRI model. Conclusions The MRI radiomics model can be helpful for preoperatively predicting low-grade or high-grade BCa and outperformed the traditional MRI model." @default.
- W4385247161 created "2023-07-26" @default.
- W4385247161 creator A5017389204 @default.
- W4385247161 creator A5017947172 @default.
- W4385247161 creator A5040071447 @default.
- W4385247161 creator A5042956973 @default.
- W4385247161 creator A5066716873 @default.
- W4385247161 creator A5075329307 @default.
- W4385247161 creator A5079912075 @default.
- W4385247161 date "2023-07-25" @default.
- W4385247161 modified "2023-10-16" @default.
- W4385247161 title "Prediction of histopathologic grades of bladder cancer with radiomics based on MRI: comparison with traditional MRI" @default.
- W4385247161 cites W1590223683 @default.
- W4385247161 cites W1788729872 @default.
- W4385247161 cites W1955900704 @default.
- W4385247161 cites W1969979201 @default.
- W4385247161 cites W2035062922 @default.
- W4385247161 cites W2056762101 @default.
- W4385247161 cites W2085910362 @default.
- W4385247161 cites W2086391655 @default.
- W4385247161 cites W2097475056 @default.
- W4385247161 cites W2123168071 @default.
- W4385247161 cites W2133567801 @default.
- W4385247161 cites W2147916552 @default.
- W4385247161 cites W2166339706 @default.
- W4385247161 cites W2169262628 @default.
- W4385247161 cites W2174661749 @default.
- W4385247161 cites W2462649057 @default.
- W4385247161 cites W2588434214 @default.
- W4385247161 cites W2592913595 @default.
- W4385247161 cites W2800613296 @default.
- W4385247161 cites W2802670607 @default.
- W4385247161 cites W2916183155 @default.
- W4385247161 cites W2917837889 @default.
- W4385247161 cites W2941415195 @default.
- W4385247161 cites W2984760208 @default.
- W4385247161 cites W3010519118 @default.
- W4385247161 cites W3014013305 @default.
- W4385247161 cites W3023189324 @default.
- W4385247161 cites W3089864990 @default.
- W4385247161 cites W3162629281 @default.
- W4385247161 cites W3164057607 @default.
- W4385247161 cites W3198719997 @default.
- W4385247161 cites W3215872116 @default.
- W4385247161 cites W3217738361 @default.
- W4385247161 cites W3217774083 @default.
- W4385247161 cites W4200026971 @default.
- W4385247161 cites W4200228546 @default.
- W4385247161 cites W4205125979 @default.
- W4385247161 cites W4206382416 @default.
- W4385247161 cites W4242669880 @default.
- W4385247161 doi "https://doi.org/10.21203/rs.3.rs-3188308/v1" @default.
- W4385247161 hasPublicationYear "2023" @default.
- W4385247161 type Work @default.
- W4385247161 citedByCount "0" @default.
- W4385247161 crossrefType "posted-content" @default.
- W4385247161 hasAuthorship W4385247161A5017389204 @default.
- W4385247161 hasAuthorship W4385247161A5017947172 @default.
- W4385247161 hasAuthorship W4385247161A5040071447 @default.
- W4385247161 hasAuthorship W4385247161A5042956973 @default.
- W4385247161 hasAuthorship W4385247161A5066716873 @default.
- W4385247161 hasAuthorship W4385247161A5075329307 @default.
- W4385247161 hasAuthorship W4385247161A5079912075 @default.
- W4385247161 hasBestOaLocation W43852471611 @default.
- W4385247161 hasConcept C119857082 @default.
- W4385247161 hasConcept C121608353 @default.
- W4385247161 hasConcept C126322002 @default.
- W4385247161 hasConcept C126838900 @default.
- W4385247161 hasConcept C142724271 @default.
- W4385247161 hasConcept C143409427 @default.
- W4385247161 hasConcept C143998085 @default.
- W4385247161 hasConcept C144301174 @default.
- W4385247161 hasConcept C149550507 @default.
- W4385247161 hasConcept C151956035 @default.
- W4385247161 hasConcept C161584116 @default.
- W4385247161 hasConcept C199163554 @default.
- W4385247161 hasConcept C2778559731 @default.
- W4385247161 hasConcept C2780352672 @default.
- W4385247161 hasConcept C2989005 @default.
- W4385247161 hasConcept C34626388 @default.
- W4385247161 hasConcept C38180746 @default.
- W4385247161 hasConcept C41008148 @default.
- W4385247161 hasConcept C58471807 @default.
- W4385247161 hasConcept C70816921 @default.
- W4385247161 hasConcept C71924100 @default.
- W4385247161 hasConcept C72563966 @default.
- W4385247161 hasConceptScore W4385247161C119857082 @default.
- W4385247161 hasConceptScore W4385247161C121608353 @default.
- W4385247161 hasConceptScore W4385247161C126322002 @default.
- W4385247161 hasConceptScore W4385247161C126838900 @default.
- W4385247161 hasConceptScore W4385247161C142724271 @default.
- W4385247161 hasConceptScore W4385247161C143409427 @default.
- W4385247161 hasConceptScore W4385247161C143998085 @default.
- W4385247161 hasConceptScore W4385247161C144301174 @default.
- W4385247161 hasConceptScore W4385247161C149550507 @default.
- W4385247161 hasConceptScore W4385247161C151956035 @default.
- W4385247161 hasConceptScore W4385247161C161584116 @default.
- W4385247161 hasConceptScore W4385247161C199163554 @default.
- W4385247161 hasConceptScore W4385247161C2778559731 @default.
- W4385247161 hasConceptScore W4385247161C2780352672 @default.