Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385249050> ?p ?o ?g. }
- W4385249050 endingPage "4416" @default.
- W4385249050 startingPage "4392" @default.
- W4385249050 abstract "Spatial injection-based pansharpening methods are prone to spatial or spectral distortions in pansharpening images due to insufficient extraction of spatial details and a mismatch between the amount of spatial detail information injected and the required amount. To this end, this paper proposes a pansharpening method that optimizes spatial detail extraction and injection. Firstly, a method to optimize the amount of spatial detail injection is proposed, that is, to extract the high-frequency information of the image through iterative filtering and determine the optimal number of iterations based on the global analysis of the method. Then, to fully extract and combine the spatial detail information of the source image, the detailed high-frequency image extracted corresponding to the optimal iterative filtering times is decomposed by non-subsampled shearlet transform (NSST), and a new multi-scale sum-modified-Laplacian (NSML) as an external stimulus to a parameter-adaptive pulse-coupled neural network model (PAPCNN). A fusion rule based on multi-scale morphological gradients is designed to extract a small amount of detailed information for the low-frequency subband. The fused spatial detail image can be obtained by combining the fused low-frequency and high-frequency subbands and inverse NSST transformation. Finally, pansharpening can be realized by combining spatial detail image, injection coefficient, and MS image. In this paper, many experiments are carried out on the QuickBird, GeoEye-1, and WorldView-4 datasets, and quantitative and qualitative comparisons are made with eight advanced methods. Experimental results show that the method proposed in this paper can achieve better fusion results." @default.
- W4385249050 created "2023-07-26" @default.
- W4385249050 creator A5018227889 @default.
- W4385249050 creator A5032178818 @default.
- W4385249050 creator A5033239581 @default.
- W4385249050 creator A5052332217 @default.
- W4385249050 creator A5087360244 @default.
- W4385249050 creator A5089514620 @default.
- W4385249050 date "2023-07-18" @default.
- W4385249050 modified "2023-09-27" @default.
- W4385249050 title "A pansharpening method combining iterative filtering and NSST-NSML-PAPCNN to optimize spatial detail extraction and injection" @default.
- W4385249050 cites W1997951181 @default.
- W4385249050 cites W2010515061 @default.
- W4385249050 cites W2100329651 @default.
- W4385249050 cites W2109701261 @default.
- W4385249050 cites W2120053475 @default.
- W4385249050 cites W2124743705 @default.
- W4385249050 cites W2139529730 @default.
- W4385249050 cites W2159269332 @default.
- W4385249050 cites W2163334907 @default.
- W4385249050 cites W2163677711 @default.
- W4385249050 cites W2171108951 @default.
- W4385249050 cites W2171627515 @default.
- W4385249050 cites W2303172903 @default.
- W4385249050 cites W2339428543 @default.
- W4385249050 cites W2410034714 @default.
- W4385249050 cites W2462592242 @default.
- W4385249050 cites W2522703671 @default.
- W4385249050 cites W2560449954 @default.
- W4385249050 cites W2741377155 @default.
- W4385249050 cites W2765749804 @default.
- W4385249050 cites W2766278341 @default.
- W4385249050 cites W2767512561 @default.
- W4385249050 cites W2775207294 @default.
- W4385249050 cites W2792142731 @default.
- W4385249050 cites W2804199492 @default.
- W4385249050 cites W2808591023 @default.
- W4385249050 cites W2908050381 @default.
- W4385249050 cites W2940957108 @default.
- W4385249050 cites W2944146578 @default.
- W4385249050 cites W3014967571 @default.
- W4385249050 cites W3023221758 @default.
- W4385249050 cites W3043042355 @default.
- W4385249050 cites W3082358108 @default.
- W4385249050 cites W3085879958 @default.
- W4385249050 cites W3096904276 @default.
- W4385249050 cites W3097824737 @default.
- W4385249050 cites W3109408464 @default.
- W4385249050 cites W3115223653 @default.
- W4385249050 cites W4226237591 @default.
- W4385249050 cites W4283168125 @default.
- W4385249050 cites W4285529816 @default.
- W4385249050 cites W4288391574 @default.
- W4385249050 cites W4296636440 @default.
- W4385249050 cites W4298146075 @default.
- W4385249050 cites W4306411454 @default.
- W4385249050 cites W4313451654 @default.
- W4385249050 cites W4313479634 @default.
- W4385249050 cites W4313825612 @default.
- W4385249050 doi "https://doi.org/10.1080/01431161.2023.2235642" @default.
- W4385249050 hasPublicationYear "2023" @default.
- W4385249050 type Work @default.
- W4385249050 citedByCount "0" @default.
- W4385249050 crossrefType "journal-article" @default.
- W4385249050 hasAuthorship W4385249050A5018227889 @default.
- W4385249050 hasAuthorship W4385249050A5032178818 @default.
- W4385249050 hasAuthorship W4385249050A5033239581 @default.
- W4385249050 hasAuthorship W4385249050A5052332217 @default.
- W4385249050 hasAuthorship W4385249050A5087360244 @default.
- W4385249050 hasAuthorship W4385249050A5089514620 @default.
- W4385249050 hasConcept C100921725 @default.
- W4385249050 hasConcept C104317684 @default.
- W4385249050 hasConcept C115961682 @default.
- W4385249050 hasConcept C120665830 @default.
- W4385249050 hasConcept C121332964 @default.
- W4385249050 hasConcept C121475858 @default.
- W4385249050 hasConcept C127313418 @default.
- W4385249050 hasConcept C153180895 @default.
- W4385249050 hasConcept C154945302 @default.
- W4385249050 hasConcept C159620131 @default.
- W4385249050 hasConcept C185592680 @default.
- W4385249050 hasConcept C204241405 @default.
- W4385249050 hasConcept C205372480 @default.
- W4385249050 hasConcept C31972630 @default.
- W4385249050 hasConcept C41008148 @default.
- W4385249050 hasConcept C55493867 @default.
- W4385249050 hasConcept C62649853 @default.
- W4385249050 hasConcept C69744172 @default.
- W4385249050 hasConceptScore W4385249050C100921725 @default.
- W4385249050 hasConceptScore W4385249050C104317684 @default.
- W4385249050 hasConceptScore W4385249050C115961682 @default.
- W4385249050 hasConceptScore W4385249050C120665830 @default.
- W4385249050 hasConceptScore W4385249050C121332964 @default.
- W4385249050 hasConceptScore W4385249050C121475858 @default.
- W4385249050 hasConceptScore W4385249050C127313418 @default.
- W4385249050 hasConceptScore W4385249050C153180895 @default.
- W4385249050 hasConceptScore W4385249050C154945302 @default.
- W4385249050 hasConceptScore W4385249050C159620131 @default.