Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385250298> ?p ?o ?g. }
- W4385250298 endingPage "807" @default.
- W4385250298 startingPage "807" @default.
- W4385250298 abstract "To assess whether computed tomography (CT) conversion across different scan parameters and manufacturers using a routable generative adversarial network (RouteGAN) can improve the accuracy and variability in quantifying interstitial lung disease (ILD) using a deep learning-based automated software.This study included patients with ILD who underwent thin-section CT. Unmatched CT images obtained using scanners from four manufacturers (vendors A-D), standard- or low-radiation doses, and sharp or medium kernels were classified into groups 1-7 according to acquisition conditions. CT images in groups 2-7 were converted into the target CT style (Group 1: vendor A, standard dose, and sharp kernel) using a RouteGAN. ILD was quantified on original and converted CT images using a deep learning-based software (Aview, Coreline Soft). The accuracy of quantification was analyzed using the dice similarity coefficient (DSC) and pixel-wise overlap accuracy metrics against manual quantification by a radiologist. Five radiologists evaluated quantification accuracy using a 10-point visual scoring system.Three hundred and fifty CT slices from 150 patients (mean age: 67.6 ± 10.7 years; 56 females) were included. The overlap accuracies for quantifying total abnormalities in groups 2-7 improved after CT conversion (original vs. converted: 0.63 vs. 0.68 for DSC, 0.66 vs. 0.70 for pixel-wise recall, and 0.68 vs. 0.73 for pixel-wise precision; P < 0.002 for all). The DSCs of fibrosis score, honeycombing, and reticulation significantly increased after CT conversion (0.32 vs. 0.64, 0.19 vs. 0.47, and 0.23 vs. 0.54, P < 0.002 for all), whereas those of ground-glass opacity, consolidation, and emphysema did not change significantly or decreased slightly. The radiologists' scores were significantly higher (P < 0.001) and less variable on converted CT.CT conversion using a RouteGAN can improve the accuracy and variability of CT images obtained using different scan parameters and manufacturers in deep learning-based quantification of ILD." @default.
- W4385250298 created "2023-07-26" @default.
- W4385250298 creator A5001134152 @default.
- W4385250298 creator A5001490445 @default.
- W4385250298 creator A5003839112 @default.
- W4385250298 creator A5004946653 @default.
- W4385250298 creator A5006695326 @default.
- W4385250298 creator A5012644755 @default.
- W4385250298 creator A5013239231 @default.
- W4385250298 creator A5025430914 @default.
- W4385250298 creator A5028436330 @default.
- W4385250298 creator A5029864503 @default.
- W4385250298 creator A5036418542 @default.
- W4385250298 creator A5037176963 @default.
- W4385250298 creator A5044740041 @default.
- W4385250298 creator A5048147199 @default.
- W4385250298 creator A5049122506 @default.
- W4385250298 creator A5049177901 @default.
- W4385250298 creator A5050188860 @default.
- W4385250298 creator A5054672135 @default.
- W4385250298 creator A5057587934 @default.
- W4385250298 creator A5066122532 @default.
- W4385250298 creator A5079187688 @default.
- W4385250298 creator A5079950113 @default.
- W4385250298 creator A5081809941 @default.
- W4385250298 date "2023-01-01" @default.
- W4385250298 modified "2023-09-25" @default.
- W4385250298 title "Generative Adversarial Network-Based Image Conversion Among Different Computed Tomography Protocols and Vendors: Effects on Accuracy and Variability in Quantifying Regional Disease Patterns of Interstitial Lung Disease" @default.
- W4385250298 cites W1540856690 @default.
- W4385250298 cites W1542489084 @default.
- W4385250298 cites W1909740415 @default.
- W4385250298 cites W1969802531 @default.
- W4385250298 cites W1999087279 @default.
- W4385250298 cites W1999732502 @default.
- W4385250298 cites W2019317712 @default.
- W4385250298 cites W2026082138 @default.
- W4385250298 cites W2037124149 @default.
- W4385250298 cites W2045735961 @default.
- W4385250298 cites W2074214652 @default.
- W4385250298 cites W2080670515 @default.
- W4385250298 cites W2093052802 @default.
- W4385250298 cites W2122737351 @default.
- W4385250298 cites W2142382161 @default.
- W4385250298 cites W2149661971 @default.
- W4385250298 cites W2155709621 @default.
- W4385250298 cites W2155777150 @default.
- W4385250298 cites W2167383172 @default.
- W4385250298 cites W2555083835 @default.
- W4385250298 cites W2571384411 @default.
- W4385250298 cites W2589320812 @default.
- W4385250298 cites W2614365993 @default.
- W4385250298 cites W2756466752 @default.
- W4385250298 cites W2765157658 @default.
- W4385250298 cites W2907856352 @default.
- W4385250298 cites W2949942603 @default.
- W4385250298 cites W2970194878 @default.
- W4385250298 cites W3023773746 @default.
- W4385250298 cites W3207171866 @default.
- W4385250298 cites W3215136412 @default.
- W4385250298 cites W4297256582 @default.
- W4385250298 cites W783453938 @default.
- W4385250298 doi "https://doi.org/10.3348/kjr.2023.0088" @default.
- W4385250298 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37500581" @default.
- W4385250298 hasPublicationYear "2023" @default.
- W4385250298 type Work @default.
- W4385250298 citedByCount "0" @default.
- W4385250298 crossrefType "journal-article" @default.
- W4385250298 hasAuthorship W4385250298A5001134152 @default.
- W4385250298 hasAuthorship W4385250298A5001490445 @default.
- W4385250298 hasAuthorship W4385250298A5003839112 @default.
- W4385250298 hasAuthorship W4385250298A5004946653 @default.
- W4385250298 hasAuthorship W4385250298A5006695326 @default.
- W4385250298 hasAuthorship W4385250298A5012644755 @default.
- W4385250298 hasAuthorship W4385250298A5013239231 @default.
- W4385250298 hasAuthorship W4385250298A5025430914 @default.
- W4385250298 hasAuthorship W4385250298A5028436330 @default.
- W4385250298 hasAuthorship W4385250298A5029864503 @default.
- W4385250298 hasAuthorship W4385250298A5036418542 @default.
- W4385250298 hasAuthorship W4385250298A5037176963 @default.
- W4385250298 hasAuthorship W4385250298A5044740041 @default.
- W4385250298 hasAuthorship W4385250298A5048147199 @default.
- W4385250298 hasAuthorship W4385250298A5049122506 @default.
- W4385250298 hasAuthorship W4385250298A5049177901 @default.
- W4385250298 hasAuthorship W4385250298A5050188860 @default.
- W4385250298 hasAuthorship W4385250298A5054672135 @default.
- W4385250298 hasAuthorship W4385250298A5057587934 @default.
- W4385250298 hasAuthorship W4385250298A5066122532 @default.
- W4385250298 hasAuthorship W4385250298A5079187688 @default.
- W4385250298 hasAuthorship W4385250298A5079950113 @default.
- W4385250298 hasAuthorship W4385250298A5081809941 @default.
- W4385250298 hasConcept C126322002 @default.
- W4385250298 hasConcept C126838900 @default.
- W4385250298 hasConcept C153180895 @default.
- W4385250298 hasConcept C154945302 @default.
- W4385250298 hasConcept C2777543607 @default.
- W4385250298 hasConcept C2777714996 @default.
- W4385250298 hasConcept C2779412668 @default.
- W4385250298 hasConcept C2989005 @default.