Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385250676> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4385250676 endingPage "8545" @default.
- W4385250676 startingPage "8545" @default.
- W4385250676 abstract "The exterior location of a user can be accurately determined using a global positioning system (GPS). However, accurately locating objects indoors poses challenges due to signal penetration limitations within buildings. In this study, an MLP with stochastic gradient descent (SGD) among artificial neural networks (ANNs) and signal strength indicator (RSSI) data received from a Zigbee sensor are used to estimate the indoor location of an object. Four fixed nodes (FNs) were placed at the corners of an unobstructed area measuring 3 m in both length and width. Within this designated space, mobile nodes (MNs) captured position data and received RSSI values from the nodes to establish a comprehensive database. To enhance the precision of our results, we used a data augmentation approach which effectively expanded the pool of selected cells. We also divided the area into sectors using an ANN to increase the estimation accuracy, focusing on selecting sectors that had measurements. To enhance both accuracy and computational speed in selecting coordinates, we used B-spline surface equations. This method, which is similar to using a lookup table, brought noticeable benefits: for indoor locations, the error margin decreased below the threshold of sensor hardware tolerance as the number of segmentation steps increased. By comparing our proposed deep learning methodology with the traditional fingerprinting technique that utilizes a progressive segmentation algorithm, we verified the accuracy and cost-effectiveness of our method. It is expected that this research will facilitate the development of practical indoor location-based services that can estimate accurate indoor locations with minimal data." @default.
- W4385250676 created "2023-07-26" @default.
- W4385250676 creator A5005528559 @default.
- W4385250676 creator A5012209157 @default.
- W4385250676 creator A5088525159 @default.
- W4385250676 date "2023-07-24" @default.
- W4385250676 modified "2023-10-16" @default.
- W4385250676 title "Artificial Neural Network for Indoor Localization Based on Progressive Subdivided Quadrant Method" @default.
- W4385250676 cites W1869465852 @default.
- W4385250676 cites W2020658029 @default.
- W4385250676 cites W2025241138 @default.
- W4385250676 cites W2052024966 @default.
- W4385250676 cites W2080542027 @default.
- W4385250676 cites W2159811720 @default.
- W4385250676 cites W2291859485 @default.
- W4385250676 cites W2462826356 @default.
- W4385250676 cites W2549104061 @default.
- W4385250676 cites W2774684174 @default.
- W4385250676 cites W2785821961 @default.
- W4385250676 cites W2811258534 @default.
- W4385250676 cites W2884792986 @default.
- W4385250676 cites W2899787752 @default.
- W4385250676 cites W2900776313 @default.
- W4385250676 cites W2901566077 @default.
- W4385250676 cites W2903610530 @default.
- W4385250676 cites W2921611109 @default.
- W4385250676 cites W2922174720 @default.
- W4385250676 cites W2950392941 @default.
- W4385250676 cites W2971553606 @default.
- W4385250676 cites W3111812689 @default.
- W4385250676 cites W3114364338 @default.
- W4385250676 cites W3120090073 @default.
- W4385250676 cites W3126948622 @default.
- W4385250676 cites W3170628940 @default.
- W4385250676 cites W3172598172 @default.
- W4385250676 cites W3177113294 @default.
- W4385250676 cites W3187464544 @default.
- W4385250676 cites W3188648555 @default.
- W4385250676 cites W3202355635 @default.
- W4385250676 cites W3208231944 @default.
- W4385250676 cites W4200369389 @default.
- W4385250676 cites W4206573673 @default.
- W4385250676 cites W4220654399 @default.
- W4385250676 cites W4282585228 @default.
- W4385250676 cites W4297326815 @default.
- W4385250676 cites W4307862806 @default.
- W4385250676 doi "https://doi.org/10.3390/app13148545" @default.
- W4385250676 hasPublicationYear "2023" @default.
- W4385250676 type Work @default.
- W4385250676 citedByCount "0" @default.
- W4385250676 crossrefType "journal-article" @default.
- W4385250676 hasAuthorship W4385250676A5005528559 @default.
- W4385250676 hasAuthorship W4385250676A5012209157 @default.
- W4385250676 hasAuthorship W4385250676A5088525159 @default.
- W4385250676 hasBestOaLocation W43852506761 @default.
- W4385250676 hasConcept C111919701 @default.
- W4385250676 hasConcept C153180895 @default.
- W4385250676 hasConcept C154945302 @default.
- W4385250676 hasConcept C2777486483 @default.
- W4385250676 hasConcept C31972630 @default.
- W4385250676 hasConcept C41008148 @default.
- W4385250676 hasConcept C50644808 @default.
- W4385250676 hasConcept C60229501 @default.
- W4385250676 hasConcept C76155785 @default.
- W4385250676 hasConcept C79403827 @default.
- W4385250676 hasConcept C89600930 @default.
- W4385250676 hasConcept C89805583 @default.
- W4385250676 hasConceptScore W4385250676C111919701 @default.
- W4385250676 hasConceptScore W4385250676C153180895 @default.
- W4385250676 hasConceptScore W4385250676C154945302 @default.
- W4385250676 hasConceptScore W4385250676C2777486483 @default.
- W4385250676 hasConceptScore W4385250676C31972630 @default.
- W4385250676 hasConceptScore W4385250676C41008148 @default.
- W4385250676 hasConceptScore W4385250676C50644808 @default.
- W4385250676 hasConceptScore W4385250676C60229501 @default.
- W4385250676 hasConceptScore W4385250676C76155785 @default.
- W4385250676 hasConceptScore W4385250676C79403827 @default.
- W4385250676 hasConceptScore W4385250676C89600930 @default.
- W4385250676 hasConceptScore W4385250676C89805583 @default.
- W4385250676 hasIssue "14" @default.
- W4385250676 hasLocation W43852506761 @default.
- W4385250676 hasOpenAccess W4385250676 @default.
- W4385250676 hasPrimaryLocation W43852506761 @default.
- W4385250676 hasRelatedWork W1669643531 @default.
- W4385250676 hasRelatedWork W1982826852 @default.
- W4385250676 hasRelatedWork W2005437358 @default.
- W4385250676 hasRelatedWork W2008656436 @default.
- W4385250676 hasRelatedWork W2023558673 @default.
- W4385250676 hasRelatedWork W2110230079 @default.
- W4385250676 hasRelatedWork W2134924024 @default.
- W4385250676 hasRelatedWork W2517104666 @default.
- W4385250676 hasRelatedWork W2613186388 @default.
- W4385250676 hasRelatedWork W1967061043 @default.
- W4385250676 hasVolume "13" @default.
- W4385250676 isParatext "false" @default.
- W4385250676 isRetracted "false" @default.
- W4385250676 workType "article" @default.