Matches in SemOpenAlex for { <https://semopenalex.org/work/W4385255518> ?p ?o ?g. }
- W4385255518 abstract "Abstract The double Fourier sphere (DFS) method uses a clever trick to transform a function defined on the unit sphere to the torus and subsequently approximate it by a Fourier series, which can be evaluated efficiently via fast Fourier transforms. Similar approaches have emerged for approximation problems on the disk, the ball, and the cylinder. In this paper, we introduce a generalized DFS method applicable to various manifolds, including all the above-mentioned cases and many more, such as the rotation group. This approach consists in transforming a function defined on a manifold to the torus of the same dimension. We show that the Fourier series of the transformed function can be transferred back to the manifold, where it converges uniformly to the original function. In particular, we obtain analytic convergence rates in case of Hölder-continuous functions on the manifold." @default.
- W4385255518 created "2023-07-26" @default.
- W4385255518 creator A5016136976 @default.
- W4385255518 creator A5054449081 @default.
- W4385255518 date "2023-07-25" @default.
- W4385255518 modified "2023-10-01" @default.
- W4385255518 title "A double Fourier sphere method for d-dimensional manifolds" @default.
- W4385255518 cites W1484390400 @default.
- W4385255518 cites W1531371725 @default.
- W4385255518 cites W1557324374 @default.
- W4385255518 cites W1844026322 @default.
- W4385255518 cites W1967374108 @default.
- W4385255518 cites W1973663906 @default.
- W4385255518 cites W1979962982 @default.
- W4385255518 cites W1987943054 @default.
- W4385255518 cites W1988233945 @default.
- W4385255518 cites W1993358632 @default.
- W4385255518 cites W1999264281 @default.
- W4385255518 cites W2007211908 @default.
- W4385255518 cites W2017142556 @default.
- W4385255518 cites W2020044270 @default.
- W4385255518 cites W2039708897 @default.
- W4385255518 cites W2043618362 @default.
- W4385255518 cites W2060770448 @default.
- W4385255518 cites W2063649283 @default.
- W4385255518 cites W2064936877 @default.
- W4385255518 cites W2076372266 @default.
- W4385255518 cites W2096594817 @default.
- W4385255518 cites W2099619155 @default.
- W4385255518 cites W2104885343 @default.
- W4385255518 cites W2160615084 @default.
- W4385255518 cites W2345485321 @default.
- W4385255518 cites W2465190302 @default.
- W4385255518 cites W2481653444 @default.
- W4385255518 cites W2583042652 @default.
- W4385255518 cites W2624923093 @default.
- W4385255518 cites W2752884334 @default.
- W4385255518 cites W2765660925 @default.
- W4385255518 cites W2914578694 @default.
- W4385255518 cites W2962716964 @default.
- W4385255518 cites W2963520444 @default.
- W4385255518 cites W2989660359 @default.
- W4385255518 cites W3011210794 @default.
- W4385255518 cites W3024741015 @default.
- W4385255518 cites W3092632390 @default.
- W4385255518 cites W3105035298 @default.
- W4385255518 cites W3107312293 @default.
- W4385255518 cites W3121354812 @default.
- W4385255518 cites W3196693920 @default.
- W4385255518 cites W4214550829 @default.
- W4385255518 cites W4234383186 @default.
- W4385255518 cites W4255828897 @default.
- W4385255518 cites W4287025878 @default.
- W4385255518 cites W4292641237 @default.
- W4385255518 cites W4310102499 @default.
- W4385255518 cites W579985084 @default.
- W4385255518 doi "https://doi.org/10.1007/s43670-023-00064-8" @default.
- W4385255518 hasPublicationYear "2023" @default.
- W4385255518 type Work @default.
- W4385255518 citedByCount "0" @default.
- W4385255518 crossrefType "journal-article" @default.
- W4385255518 hasAuthorship W4385255518A5016136976 @default.
- W4385255518 hasAuthorship W4385255518A5054449081 @default.
- W4385255518 hasBestOaLocation W43852555181 @default.
- W4385255518 hasConcept C102519508 @default.
- W4385255518 hasConcept C122041747 @default.
- W4385255518 hasConcept C127413603 @default.
- W4385255518 hasConcept C134306372 @default.
- W4385255518 hasConcept C137665795 @default.
- W4385255518 hasConcept C14036430 @default.
- W4385255518 hasConcept C143724316 @default.
- W4385255518 hasConcept C151730666 @default.
- W4385255518 hasConcept C166386157 @default.
- W4385255518 hasConcept C175225751 @default.
- W4385255518 hasConcept C191948623 @default.
- W4385255518 hasConcept C202444582 @default.
- W4385255518 hasConcept C203024314 @default.
- W4385255518 hasConcept C207864730 @default.
- W4385255518 hasConcept C2524010 @default.
- W4385255518 hasConcept C33676613 @default.
- W4385255518 hasConcept C33923547 @default.
- W4385255518 hasConcept C529865628 @default.
- W4385255518 hasConcept C78458016 @default.
- W4385255518 hasConcept C78519656 @default.
- W4385255518 hasConcept C86803240 @default.
- W4385255518 hasConcept C9767117 @default.
- W4385255518 hasConceptScore W4385255518C102519508 @default.
- W4385255518 hasConceptScore W4385255518C122041747 @default.
- W4385255518 hasConceptScore W4385255518C127413603 @default.
- W4385255518 hasConceptScore W4385255518C134306372 @default.
- W4385255518 hasConceptScore W4385255518C137665795 @default.
- W4385255518 hasConceptScore W4385255518C14036430 @default.
- W4385255518 hasConceptScore W4385255518C143724316 @default.
- W4385255518 hasConceptScore W4385255518C151730666 @default.
- W4385255518 hasConceptScore W4385255518C166386157 @default.
- W4385255518 hasConceptScore W4385255518C175225751 @default.
- W4385255518 hasConceptScore W4385255518C191948623 @default.
- W4385255518 hasConceptScore W4385255518C202444582 @default.
- W4385255518 hasConceptScore W4385255518C203024314 @default.
- W4385255518 hasConceptScore W4385255518C207864730 @default.